Todorov surface
In algebraic geometry, a Todorov surface is one of a class of surfaces of general type introduced by {{harvs|txt|last=Todorov|year=1981}} for which the conclusion of the Torelli theorem does not hold.
References
- {{citation|mr=0977767
|last=Morrison|first= David R.
|chapter=On the moduli of Todorov surfaces|title= Algebraic geometry and commutative algebra|volume= I|pages= 313–355|publisher= Kinokuniya |place=Tokyo|year= 1988}}
- {{citation|mr=0610540
|last=Todorov|first= Andrei N.
|title=A construction of surfaces with pg = 1, q = 0 and 2 ≤ (K2) ≤ 8. Counterexamples of the global Torelli theorem.
|journal=Invent. Math.|volume= 63 |year=1981|issue= 2|pages= 287–304
|doi=10.1007/BF01393879}}
{{algebraic-geometry-stub}}