Toeplitz matrix#Solving a Toeplitz system

{{Short description|Matrix with shifting rows}}

In linear algebra, a Toeplitz matrix or diagonal-constant matrix, named after Otto Toeplitz, is a matrix in which each descending diagonal from left to right is constant. For instance, the following matrix is a Toeplitz matrix:

:\qquad\begin{bmatrix}

a & b & c & d & e \\

f & a & b & c & d \\

g & f & a & b & c \\

h & g & f & a & b \\

i & h & g & f & a

\end{bmatrix}.

Any n \times n matrix A of the form

:A = \begin{bmatrix}

a_0 & a_{-1} & a_{-2} & \cdots & \cdots & a_{-(n-1)} \\

a_1 & a_0 & a_{-1} & \ddots & & \vdots \\

a_2 & a_1 & \ddots & \ddots & \ddots & \vdots \\

\vdots & \ddots & \ddots & \ddots & a_{-1} & a_{-2} \\

\vdots & & \ddots & a_1 & a_0 & a_{-1} \\

a_{n-1} & \cdots & \cdots & a_2 & a_1 & a_0

\end{bmatrix}

is a Toeplitz matrix. If the i,j element of A is denoted A_{i,j} then we have

:A_{i,j} = A_{i+1,j+1} = a_{i-j}.

A Toeplitz matrix is not necessarily square.

Solving a Toeplitz system

A matrix equation of the form

:Ax = b

is called a Toeplitz system if A is a Toeplitz matrix. If A is an n \times n Toeplitz matrix, then the system has at most only

2n-1 unique values, rather than n^2. We might therefore expect that the solution of a Toeplitz system would be easier, and indeed that is the case.

Toeplitz systems can be solved by algorithms such as the Schur algorithm or the Levinson algorithm in O(n^2) time.{{harvnb|Press| Teukolsky| Vetterling| Flannery| 2007 | loc= [http://apps.nrbook.com/empanel/index.html?pg=96 §2.8.2—Toeplitz matrices]}}{{harvnb|Hayes|1996|loc=Chapter 5.2.6}} Variants of the latter have been shown to be weakly stable (i.e. they exhibit numerical stability for well-conditioned linear systems).{{harvnb|Krishna | Wang |1993}} The algorithms can also be used to find the determinant of a Toeplitz matrix in O(n^2) time.{{harvnb|Monahan |2011 | loc= §4.5—Toeplitz systems}}

A Toeplitz matrix can also be decomposed (i.e. factored) in O(n^2) time.{{harvnb|Brent |1999}} The Bareiss algorithm for an LU decomposition is stable.{{harvnb|Bojanczyk|Brent|de Hoog|Sweet| 1995}} An LU decomposition gives a quick method for solving a Toeplitz system, and also for computing the determinant.

Properties

  • An n\times n Toeplitz matrix may be defined as a matrix A where A_{i,j}=c_{i-j}, for constants c_{1-n},\ldots,c_{n-1}. The set of n\times n Toeplitz matrices is a subspace of the vector space of n\times n matrices (under matrix addition and scalar multiplication).
  • Two Toeplitz matrices may be added in O(n) time (by storing only one value of each diagonal) and multiplied in O(n^2) time.
  • Toeplitz matrices are persymmetric. Symmetric Toeplitz matrices are both centrosymmetric and bisymmetric.
  • Toeplitz matrices are also closely connected with Fourier series, because the multiplication operator by a trigonometric polynomial, compressed to a finite-dimensional space, can be represented by such a matrix. Similarly, one can represent linear convolution as multiplication by a Toeplitz matrix.
  • Toeplitz matrices commute asymptotically. This means they diagonalize in the same basis when the row and column dimension tends to infinity.
  • For symmetric Toeplitz matrices, there is the decomposition

::\frac{1}{a_0} A = G G^\operatorname{T} - (G - I)(G - I)^\operatorname{T}

:where G is the lower triangular part of \frac{1}{a_0} A.

::A^{-1} = \frac{1}{\alpha_0} (B B^\operatorname{T} - C C^\operatorname{T})

:where B and C are lower triangular Toeplitz matrices and C is a strictly lower triangular matrix.{{harvnb|Mukherjee | Maiti |1988}}

Discrete convolution

The convolution operation can be constructed as a matrix multiplication, where one of the inputs is converted into a Toeplitz matrix. For example, the convolution of h and x can be formulated as:

:

y = h \ast x =

\begin{bmatrix}

h_1 & 0 & \cdots & 0 & 0 \\

h_2 & h_1 & & \vdots & \vdots \\

h_3 & h_2 & \cdots & 0 & 0 \\

\vdots & h_3 & \cdots & h_1 & 0 \\

h_{m-1} & \vdots & \ddots & h_2 & h_1 \\

h_m & h_{m-1} & & \vdots & h_2 \\

0 & h_m & \ddots & h_{m-2} & \vdots \\

0 & 0 & \cdots & h_{m-1} & h_{m-2} \\

\vdots & \vdots & & h_m & h_{m-1} \\

0 & 0 & 0 & \cdots & h_m

\end{bmatrix}

\begin{bmatrix}

x_1 \\

x_2 \\

x_3 \\

\vdots \\

x_n

\end{bmatrix}

: y^T =

\begin{bmatrix}

h_1 & h_2 & h_3 & \cdots & h_{m-1} & h_m

\end{bmatrix}

\begin{bmatrix}

x_1 & x_2 & x_3 & \cdots & x_n & 0 & 0 & 0& \cdots & 0 \\

0 & x_1 & x_2 & x_3 & \cdots & x_n & 0 & 0 & \cdots & 0 \\

0 & 0 & x_1 & x_2 & x_3 & \ldots & x_n & 0 & \cdots & 0 \\

\vdots & & \vdots & \vdots & \vdots & & \vdots & \vdots & & \vdots \\

0 & \cdots & 0 & 0 & x_1 & \cdots & x_{n-2} & x_{n-1} & x_n & 0 \\

0 & \cdots & 0 & 0 & 0 & x_1 & \cdots & x_{n-2} & x_{n-1} & x_n

\end{bmatrix}.

This approach can be extended to compute autocorrelation, cross-correlation, moving average etc.

Infinite Toeplitz matrix

{{Main|Toeplitz operator}}

A bi-infinite Toeplitz matrix (i.e. entries indexed by \mathbb Z\times\mathbb Z) A induces a linear operator on \ell^2.

:

A=\begin{bmatrix}

& \vdots & \vdots & \vdots & \vdots \\

\cdots & a_0 & a_{-1} & a_{-2} & a_{-3} & \cdots \\

\cdots & a_1 & a_0 & a_{-1} & a_{-2} & \cdots \\

\cdots & a_2 & a_1 & a_0 & a_{-1} & \cdots \\

\cdots & a_3 & a_2 & a_1 & a_0 & \cdots \\

& \vdots & \vdots & \vdots & \vdots

\end{bmatrix}.

The induced operator is bounded if and only if the coefficients of the Toeplitz matrix A are the Fourier coefficients of some essentially bounded function f.

In such cases, f is called the symbol of the Toeplitz matrix A, and the spectral norm of the Toeplitz matrix A coincides with the L^\infty norm of its symbol. The proof can be found as Theorem 1.1 of Böttcher and Grudsky.{{harvnb|Böttcher|Grudsky|2012}}

See also

  • Circulant matrix, a square Toeplitz matrix with the additional property that a_i=a_{i+n}
  • Hankel matrix, an "upside down" (i.e., row-reversed) Toeplitz matrix
  • {{annotated link|Szegő limit theorems}}
  • {{annotated link|Toeplitz operator}}

Notes

{{Reflist}}

References

{{refbegin}}

  • {{citation | last1 = Bojanczyk | first1 = A. W. | last2 = Brent | first2 = R. P. | last3 = de Hoog | first3 = F. R. | last4 = Sweet | first4 = D. R. | year = 1995 | title = On the stability of the Bareiss and related Toeplitz factorization algorithms | journal = SIAM Journal on Matrix Analysis and Applications | volume = 16 | pages = 40–57 | doi = 10.1137/S0895479891221563| arxiv = 1004.5510 | s2cid = 367586 }}
  • {{citation|first1=Albrecht| last1= Böttcher| first2=Sergei M. | last2= Grudsky|title=Toeplitz Matrices, Asymptotic Linear Algebra, and Functional Analysis|url=https://books.google.com/books?id=Dmr0BwAAQBAJ&pg=PA1|year=2012|publisher=Birkhäuser|isbn=978-3-0348-8395-5}}
  • {{citation | first= R. P. | last= Brent | author-link=Richard P. Brent | year= 1999 | contribution= Stability of fast algorithms for structured linear systems| title= Fast Reliable Algorithms for Matrices with Structure | editor1-first= T. | editor1-last= Kailath | editor2-first= A. H. | editor2-last=Sayed | publisher= SIAM | pages=103–116|doi=10.1137/1.9781611971354.ch4| arxiv= 1005.0671 | hdl= 1885/40746 | isbn= 978-0-89871-431-9 | s2cid= 13905858 | hdl-access= free }}
  • {{citation|last1=Chan |first1=R. H.-F.| last2= Jin| first2= X.-Q. | year=2007 | title= An Introduction to Iterative Toeplitz Solvers | publisher= SIAM|doi=10.1137/1.9780898718850|isbn=978-0-89871-636-8 }}
  • {{citation | last1 = Chandrasekeran | first1 = S. | last2 = Gu | first2 = M. | last3 = Sun | first3 = X. | last4 = Xia | first4 = J. | last5 = Zhu | first5 = J. | year = 2007 | title = A superfast algorithm for Toeplitz systems of linear equations | journal = SIAM Journal on Matrix Analysis and Applications | volume = 29 | issue = 4| pages = 1247–66 | doi = 10.1137/040617200| citeseerx = 10.1.1.116.3297 }}
  • {{citation | last1 = Chen | first1 = W. W. | last2 = Hurvich | first2 = C. M. | last3 = Lu | first3 = Y. | year = 2006 | title = On the correlation matrix of the discrete Fourier transform and the fast solution of large Toeplitz systems for long-memory time series | journal = Journal of the American Statistical Association | volume = 101 | issue = 474| pages = 812–822 | doi = 10.1198/016214505000001069| citeseerx = 10.1.1.574.4394 | s2cid = 55893963 }}
  • {{citation | last=Hayes | first=Monson H.|title= Statistical digital signal processing and modeling | year = 1996 | publisher = Wiley | isbn = 0-471-59431-8}}
  • {{citation | last1 = Krishna | first1 = H. | last2=Wang | first2= Y. | title = The Split Levinson Algorithm is weakly stable | journal = SIAM Journal on Numerical Analysis | volume = 30 | issue = 5 | pages = 1498–1508 | year = 1993 | url = http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=SJNAAM000030000005001498000001&idtype=cvips&gifs=yes | doi = 10.1137/0730078| url-access = subscription }}
  • {{citation| last=Monahan | first= J. F. | year=2011 | title=Numerical Methods of Statistics | publisher= Cambridge University Press |isbn=978-1-139-08211-2 |doi=10.1017/CBO9780511977176}}
  • {{citation| last1=Mukherjee | first1= Bishwa Nath | first2= Sadhan Samar | last2= Maiti | year= 1988 | title=On some properties of positive definite Toeplitz matrices and their possible applications | journal= Linear Algebra and Its Applications | volume= 102 | pages= 211–240 | doi= 10.1016/0024-3795(88)90326-6 | url= https://core.ac.uk/download/pdf/82070573.pdf| doi-access= free }}
  • {{citation|last1=Press | first1=W. H. | last2= Teukolsky | first2= S. A. | last3= Vetterling | first3= W. T. | last4= Flannery | first4= B. P. | year=2007 | title= Numerical Recipes: The Art of Scientific Computing | edition= 3rd | publisher= Cambridge University Press | isbn= 978-0-521-88068-8| title-link=Numerical Recipes }}
  • {{citation | last = Stewart | first = M. | year = 2003 | title = A superfast Toeplitz solver with improved numerical stability | journal = SIAM Journal on Matrix Analysis and Applications | volume = 25 | issue = 3| pages = 669–693 | doi = 10.1137/S089547980241791X | s2cid = 15717371 }}
  • {{citation | last1 = Yang | first1 = Zai | last2 = Xie | first2 = Lihua | last3 = Stoica | first3 = Petre | year = 2016 | title = Vandermonde decomposition of multilevel Toeplitz matrices with application to multidimensional super-resolution | journal = IEEE Transactions on Information Theory | volume = 62 | issue = 6 | pages = 3685–3701 | doi = 10.1109/TIT.2016.2553041 | arxiv = 1505.02510 | s2cid = 6291005 }}

{{refend}}

Further reading

{{refbegin}}

  • {{citation | last = Bareiss | first = E. H. | year = 1969 | title = Numerical solution of linear equations with Toeplitz and vector Toeplitz matrices | journal = Numerische Mathematik | volume = 13 | issue = 5| pages = 404–424 | doi = 10.1007/BF02163269 | s2cid = 121761517 }}
  • {{citation | first1= O. | last1= Goldreich | first2= A. | last2= Tal | author1-link= Oded Goldreich | title= Matrix rigidity of random Toeplitz matrices | journal= Computational Complexity | year= 2018 | volume= 27 | issue= 2 | pages= 305–350 | doi= 10.1007/s00037-016-0144-9 | s2cid= 253641700 }}
  • {{citation |author-link1=Gene H. Golub |last1=Golub |first1=G. H. |author2-link=Charles F. Van Loan |last2=van Loan |first2=C. F. |date=1996 |title=Matrix Computations |publisher=Johns Hopkins University Press |at=§4.7—Toeplitz and Related Systems |isbn=0-8018-5413-X |oclc=34515797 }}
  • {{citation |last=Gray |first=R. M. |url=http://ee.stanford.edu/~gray/toeplitz.pdf |title=Toeplitz and Circulant Matrices: A Review |journal=Foundations and Trends® in Communications and Information Theory |date=2005 |volume=2 |issue=3 |pages=155–239 |publisher=Now Publishers |doi=10.1561/0100000006}}
  • {{citation | last1 =Noor | first1 = F. | last2= Morgera | first2= S. D. | year = 1992 | title = Construction of a Hermitian Toeplitz matrix from an arbitrary set of eigenvalues | journal = IEEE Transactions on Signal Processing | volume = 40 | issue=8 | pages= 2093–4 | doi = 10.1109/78.149978 | bibcode= 1992ITSP...40.2093N }}
  • {{citation | title=Structured Matrices and Polynomials: unified superfast algorithms | first=Victor Y. | last=Pan | author-link=Victor Pan | publisher=Birkhäuser | year=2001 | isbn=978-0817642402 }}
  • {{citation| first1= Ke | last1= Ye |author2-link=Lek-Heng Lim | first2=Lek-Heng | last2= Lim | title= Every matrix is a product of Toeplitz matrices | journal= Foundations of Computational Mathematics | year= 2016 | volume=16 | issue= 3 | pages= 577–598 | doi= 10.1007/s10208-015-9254-z | arxiv= 1307.5132 | s2cid= 254166943 }}

{{refend}}

{{Matrix classes}}

{{Authority control}}

Category:Matrices (mathematics)