Toric stack
In algebraic geometry, a toric stack is a stacky generalization of a toric variety. More precisely, a toric stack is obtained by replacing in the construction of a toric variety a step of taking GIT quotients with that of taking quotient stacks. Consequently, a toric variety is a coarse approximation of a toric stack. A toric orbifold is an example of a toric stack.
See also
References
- {{cite journal |title=The category of toric stacks |year=2009|doi=10.1112/S0010437X09003911|arxiv=math/0610548|last1=Iwanari|first1=Isamu|s2cid=13941792|journal=Compositio Mathematica|volume=145|issue=3|pages=718–746}}
- {{cite journal |first1=Anton |last1=Geraschenko |first2=Matthew |last2=Satriano |doi=10.1090/S0002-9947-2014-06063-7|title=Toric stacks I: The theory of stacky fans|year=2015|s2cid=5667546|journal=Transactions of the American Mathematical Society|volume=367|issue=2|pages=1033–1071|arxiv=1107.1906}}
- {{cite journal |doi=10.1093/imrn/rnp110|title=Integral Chow Rings of Toric Stacks|year=2009|last1=Iwanari|first1=I.|s2cid=12047977|journal=International Mathematics Research Notices|arxiv=0705.3524}}
{{algebraic-geometry-stub}}