Totient summatory function

{{Short description|Arithmetic function}}

In number theory, the totient summatory function \Phi(n) is a summatory function of Euler's totient function defined by

:\Phi(n) := \sum_{k=1}^n \varphi(k), \quad n\in \mathbb{N}.

It is the number of ordered pairs of coprime integers {{Math|(p,q)}}, where {{Math|1 ≤ pqn}}.

The first few values are 0, 1, 2, 4, 6, 10, 12, 18, 22, 28, 32, ... {{OEIS|A002088}}. Values for powers of 10 are 1, 32, 3044, 304192, 30397486, 3039650754, ... {{OEIS|A064018}}.

Properties

Applying Möbius inversion to the totient function yields

:\Phi(n) = \sum_{k=1}^n k\sum _{d\mid k} \frac {\mu (d)}{d} = \frac{1}{2} \sum _{k=1}^n \mu(k) \left\lfloor \frac {n}{k} \right\rfloor \left(1 + \left\lfloor \frac {n}{k} \right\rfloor \right).

{{math|Φ(n)}} has the asymptotic expansion

:\Phi(n) \sim \frac{1}{2\zeta(2)}n^{2}+O\left( n\log n \right ) = \frac{3}{\pi^2}n^2+O\left( n\log n \right),

where {{math|ζ(2)}} is the Riemann zeta function evaluated at 2, which is \frac{\pi^2}{6}.{{mathworld|title=Riemann Zeta Function \zeta(2)|id=RiemannZetaFunctionZeta2|mode=cs2}}

Reciprocal totient summatory function

The summatory function of the reciprocal of the totient is

:S(n) := \sum _{k=1}^{n}{\frac {1}{\varphi (k)}}.

Edmund Landau showed in 1900 that this function has the asymptotic behavior{{Citation needed|date=February 2025}}

:S(n) \sim A (\gamma+\log n)+ B +O\left(\frac{\log n} n\right),

where {{math|γ}} is the Euler–Mascheroni constant,

:A = \sum_{k=1}^\infty \frac{\mu (k)^2}{k \varphi(k)} = \frac{\zeta(2)\zeta(3)}{\zeta(6)} = \prod_{p\in\mathbb{P}} \left(1+\frac 1 {p(p-1)} \right),

and

:B = \sum_{k=1}^{\infty} \frac{\mu (k)^2\log k}{k \,\varphi(k)} = A \, \prod _{p\in\mathbb{P}}\left(\frac {\log p}{p^2-p+1}\right).

The constant {{math|1= A = 1.943596...}} is sometimes known as Landau's totient constant. The sum \textstyle \sum _{k=1}^\infty 1 / (k \; \varphi (k)) converges to

:\sum _{k=1}^\infty \frac 1 {k\varphi (k)} = \zeta(2) \prod_{p\in\mathbb{P}} \left(1 + \frac 1 {p^2(p-1)}\right) =2.20386\ldots.

In this case, the product over the primes in the right side is a constant known as the totient summatory constant,{{OEIS2C|A065483}} and its value is

:\prod_{p\in\mathbb{P}} \left(1+\frac 1 {p^2(p-1)} \right) = 1.339784\ldots.

See also

References

{{reflist}}

  • {{MathWorld|id=TotientSummatoryFunction|title=Totient Summatory Function}}