Transition metal isocyanide complexes

{{Short description|Class of chemical compounds}}

file:Tc CNCH2CMe2(OMe) 6Cation.png is used in nuclear medicine imaging.{{cite journal|last1=Underwood|first1=S. R.|last2=Anagnostopoulos|first2=C.|last3=Cerqueira|first3=M.|last4=Ell|first4=P. J.|last5=Flint|first5=E. J.|last6=Harbinson|first6=M.|last7=Kelion|first7=A. D.|last8=Al-Mohammad|first8=A.|last9=Prvulovich|first9=E. M.|last10=Shaw|first10=L. J.|last11=Tweddel|first11=A. C.|title=Myocardial perfusion scintigraphy: the evidence|journal=European Journal of Nuclear Medicine and Molecular Imaging|date=1 February 2004|volume=31|issue=2|pages=261–291|doi=10.1007/s00259-003-1344-5|pmc=2562441|pmid=15129710}}]]

Transition metal isocyanide complexes are coordination compounds containing isocyanide ligands. Several thousand isocyanides are known, but the coordination chemistry is dominated by a few ligands.{{Cite journal|last1=Patil|first1=Pravin|last2=Ahmadian-Moghaddam|first2=Maryam|last3=Dömling|first3=Alexander|date=2020-09-29|title=Isocyanide 2.0|journal=Green Chemistry|volume=22 |issue=20 |pages=6902–6911 |language=en|doi=10.1039/D0GC02722G|issn=1463-9270|doi-access=free}} Common isonitrile ligands are methyl isocyanide, tert-butyl isocyanide, phenyl isocyanide, and cyclohexylisocyanide.

Some isocyanide complexes are used in medical imaging.

Ligand properties

According to the Covalent bond classification method, isocyanides are classified as L ligands, i.e., charge-neutral Lewis bases. With respect to HSAB theory, it is classified as soft.

Compared to CO, most isocyanides are superior Lewis bases and weaker pi-acceptors. Trifluoromethylisocyanide is the exception, its coordination properties are very similarly to those of CO. Isocyanide complexes often mirror the stoichiometry and structures of metal carbonyls. Like CO, isocyanides engage in pi-backbonding. The M-C-N angle provides some measure of the degree of backbonding. In electron-rich complexes, this angle is usually deviates from 180°. Unlike CO, cationic and dicationic complexes are common. RNC ligands are typically terminal, but bridging RNC ligands are common. Bridging isocyanides are always bent. General trends can be appreciated by inspection of the homoleptic complexes of the first row transition metals.

Because the CNC linkage is linear, the cone angle of these ligands is small, so it is easy to prepare polyisocyanide complexes. Many complexes of isocyanides show high coordination numbers, e.g. the eight-coordinate cation {{chem2|[Nb(CNBu\st)6I2](+)}}.{{cite journal |doi=10.1021/om960510v|title=Niobium-Centered C−C Coupling of Isonitriles|year=1996|last1=Collazo|first1=César|last2=Rodewald|first2=Dieter|last3=Schmidt|first3=Hauke|last4=Rehder|first4=Dieter|journal=Organometallics|volume=15|issue=22|pages=4884–4887}} Very bulky isocyanide ligands are also known, e.g. C6H3-2,6-Ar2-NC (Ar =aryl).{{cite journal |doi=10.1126/science.aaw6102|title=Terminal coordination of diatomic boron monofluoride to iron|year=2019|last1=Drance|first1=Myles J.|last2=Sears|first2=Jeffrey D.|last3=Mrse|first3=Anthony M.|last4=Moore|first4=Curtis E.|last5=Rheingold|first5=Arnold L.|last6=Neidig|first6=Michael L.|last7=Figueroa|first7=Joshua S.|s2cid=78094683|journal=Science|volume=363|issue=6432|pages=1203–1205|pmid=30872521|bibcode=2019Sci...363.1203D|doi-access=free}}

Di- and triisocyanide ligands

File:Structure of Os3(CO)9((CNCH2)3CMe, VIGYUF.png

Di- and triisocyanide ligands are well developed, e.g., (CH2)n(NC)2. Usually steric factors force these ligands to bind to two separate metals, i.e., they are binucleating ligands.{{cite journal |doi=10.1016/S0010-8545(00)00415-X|title=Chemistry, Properties and Applications of the Assembling 1,8-Diisocyano-p-menthane, 2,5-Dimethyldiisocyanohexane and 1,3-Diisocyanopropane Ligands and Their Coordination Polynuclear Complexes|year=2001|last1=Harvey|first1=P.|journal=Coordination Chemistry Reviews|volume=219-221|pages=17–52}} Chelating diisocyanide ligands require elaborate backbones.{{cite journal |doi=10.1021/ic00168a048|title=Synthesis and characterization of homoleptic complexes of the chelating bidentate isocyano ligand tert-BuDiNC|year=1983|last1=Plummer|first1=Daniel T.|last2=Angelici|first2=Robert J.|author2-link=Robert Angelici|journal=Inorganic Chemistry|volume=22|issue=26|pages=4063–4070}}

Synthesis

File:Fe(t-BuNC)5 (PTBICF10).png

Because of their low steric profile and high basicity, isocyanide ligands often install easily, e.g. by treating metal halides with the isocyanide. Many metal cyanides can be N-alkylated to give isocyanide complexes.{{cite journal |doi=10.1021/cr00019a016|title=Emergence of a CNH and cyano complex based organometallic chemistry|year=1993|last1=Fehlhammer|first1=Wolf P.|last2=Fritz|first2=Marcus.|journal=Chemical Reviews|volume=93|issue=3|pages=1243–1280}}

Reactions

File:Chugaev's Carbene.svg, was not recognized as such until decades after its preparation.{{cite journal | vauthors = Hahn FE, Jahnke MC | title = Heterocyclic Carbenes: Synthesis and Coordination Chemistry | journal = Angewandte Chemie International Edition | volume = 47 | issue = 17 | pages = 3122–72 | date = 2008 | pmid = 18398856 | doi = 10.1002/anie.200703883 }}]]

Typically, isocyanides are spectator ligands, but their reduced and oxidized complexes can prove reactive by virtue of the unsaturated nature of the ligand

Cationic isocyanide complexes are susceptible to nucleophilic attack at carbon. In this way, the first metal carbene complexes where prepared.

=Protonation=

Because isocyanides are more basic donors ligands than CO, their complexes are susceptible to oxidation and protonation. Thus, {{chem2|Fe(tBuNC)5}} is easily protonated, whereas its counterpart {{chem2|Fe(CO)5}} is not:{{cite journal |doi=10.1039/DT9800001789|title=Notes. Protonation of Pentakis(t-butyl Isocyanide)iron|year=1980|last1=Bassett|first1=Jean-Maria|last2=Farrugia|first2=Louis J.|last3=Stone|first3=F. Gordon A.|journal=Journal of the Chemical Society, Dalton Transactions|issue=9|page=1789}}

:Fe(CNR)5 + H+ → [HFeL5]+

:Fe(CO)5 + H+ → no reaction

Some electron-rich isocyanide complexes protonate at N to give aminocarbyne complexes:{{cite journal |doi=10.1016/S0022-328X(00)00641-0|title=Coordination Chemistry of CNH2, The Simplest Aminocarbyne|year= 2001|last1=Pombeiro|first1=Armando J.L|last2=Fátima|first2=M.|last3=Guedes Da Silva|first3=C.|journal=Journal of Organometallic Chemistry|volume=617-618|pages=65–69}}

:LnM-CNR + H+ → [LnM≡CN(H)R]+

Isocyanides sometimes insert into metal-alkyl bonds to form iminoacyls.{{cite journal| vauthors =Vicente J, Abad JA, Fortsch W, Lopez-Saez MJ |title=Reactivity of ortho-Palladated Phenol Derivatives with Unsaturated Molecules|journal=Organometallics|year= 2004|volume=23|pages=4414–4429|doi=10.1021/om0496131}}

=Redox=

Because isocyanides are both acceptors and donors, they exhibit more reversible redox than metal carbonyls. This aspect is illustrated by the isolation of the homoleptic vanadium hexaisocyanide complex in three oxidation states, i.e., [V(CNC6H3-2,6-Me2)6]n for n = -1, 0, +1.{{cite journal |doi=10.1021/ja000212w|title=First Paramagnetic Zerovalent Transition Metal Isocyanides. Syntheses, Structural Characterizations, and Magnetic Properties of Novel Low-Valent Isocyanide Complexes of Vanadium1|year=2000|last1=Barybin|first1=Mikhail V.|last2=Young|first2=Victor G.|last3=Ellis|first3=John E.|journal=Journal of the American Chemical Society|volume=122|issue=19|pages=4678–4691}}

Homoleptic complexes

class=wikitable style="float:left; text-align:center"

|+ 1st Transition Series

!Complex!!colour!!electron config.!!structure!!comments

[V(CNC6H3-2,6-Me2)6]

| green

| d6, 18e

| octahedral{{cite journal |doi=10.1021/ja9729239|title=Syntheses and Structural Characterizations of the First 16-, 17-, and 18-Electron Homoleptic Isocyanide Complexes of Vanadium: Hexakis(2,6-dimethylphenyl Isocyanide)vanadium(I, 0, −I)1|year=1998|last1=Barybin|first1=Mikhail V.|last2=Young|first2=Victor G.|last3=Ellis|first3=John E.|journal=Journal of the American Chemical Society|volume=120|issue=2|pages=429–430}}

| Cs+ salt

[V(CNC6H3-2,6-Me2)6]0

| purple

| d5

| octahedral

|

[V(CNC6H3-2,6-Me2)6]+

| red

| d4

| octahedral

| PF6 salt

[V(CNC6H3-2,6-Me2)7]+

| red

| d4, 18e

| monocapped trigonal prism{{cite journal |doi=10.1107/S2056989015006015|title=Crystal structure of Heptakis(2,6-dimethylphenyl isocyanide-κC)vanadium(I) iodide|year=2015|last1=Minyaev|first1=Mikhail E.|last2=Ellis|first2=John E.|journal=Acta Crystallographica Section E|volume=71|issue=4|pages=431–434|pmid=26029408|pmc=4438829}}

| iodide salt

[Cr(CNPh)6]3+

| orange

| d3

| octahedral{{cite journal |doi=10.1021/ic00178a025|title=X-ray Structural Characterization of [Cr(CNPh)6]CF3SO3, [Cr(CNPh)6][PF6]2, and [Cr(CNPh)6][SbCl6]3.CH2Cl2. Completion of a Unique Series of Complexes in Which the Metal Attains Four Different Oxidation States While Maintaining Identical Ligation|year=1984|last1=Bohling|first1=David A.|last2=Mann|first2=Kent R.|journal=Inorganic Chemistry|volume=23|issue=10|pages=1426–1432}}

|

[Cr(CN-t-Bu)7]2+

| orange

| d4, 18e

| octahedral{{cite journal |doi=10.1021/ja00365a025|title=Crystal Structure of the Homoleptic Seven-coordinate Complex Heptakis(tert-butyl Isocyanide)chromium(II) Hexafluorophosphate, [Cr(CN-t-Bu)7](PF6)2|year=1982|last1=Dewan|first1=John C.|last2=Mialki|first2=William S.|last3=Walton|first3=Richard A.|last4=Lippard|first4=Stephen J.|journal=Journal of the American Chemical Society|volume=104|pages=133–136}}

|

[Cr(CNPh)6]0, 18e

|

| d6

| octahedral{{cite journal |doi=10.3891/acta.chem.scand.32a-0047|title=The Crystal Structure of Hexakis(phenyl isocyanide)chromium(0), Cr(CNC6H5)6|year=1978|last1=Ljungström|first1= Evert|last2=Hämäläinen|first2=Reijo|last3=Turpeinen|first3=Urho|last4=Andresen|first4=Arne F.|last5=Smidsrød|first5=Olav|last6=Pontchour|first6=Cha-On|last7=Phavanantha|first7= Pathana|last8=Pramatus|first8=Supanich|last9= Cyvin|first9=Bjørg N.|last10=Cyvin|author-link10=Bjørg Cyvin|first10=Sven J.|journal=Acta Chemica Scandinavica|volume=32a|pages=47–50|doi-access=free}}

| many analogues

[Cr(CNMe)6]+OTf

| yellow-brown

| d5

| octahedral{{cite journal |doi=10.1021/ic00178a025|title=X-ray Structural Characterization of [Cr(CNPh)6]CF3SO3, [Cr(CNPh)6](PF6)2, and [Cr(CNPh)6](SbCl6)3.CH2Cl2. Completion of a Unique Series of Complexes in which the Metal Attains Four Different Oxidation States While Maintaining Identical Ligation|year=1984|last1=Bohling|first1=David A.|last2=Mann|first2=Kent R.|journal=Inorganic Chemistry|volume=23|issue=10|pages=1426–1432}}

|

[Mn(CNPh)6]+

| yellow

| d6, 18e

| octahedral{{cite journal |doi=10.3891/acta.chem.scand.34a-0535|title=The Crystal Structure of Hexakis(phenylisocyanide)manganese(I) Tri-iodide, [Mn(CNC6H5)6]I3 |year=1980 |last1=Ericsson |first1=Märta-Stina |last2=Jagner |first2=Susan |last3=Ljungström |first3=Evert |last4=Tørneng |first4=E. |last5=Woldbæk |first5=T. |last6=Strand |first6=T. G. |last7=Sukhoverkhov |first7=V. F. |journal=Acta Chemica Scandinavica |volume=34a |pages=535–540 |doi-access=free }}

|

[Fe(CNMe)5]0

| colourless

| d8, 18e

| trigonal bipyramidal

|

[Fe2(CNEt)9]0

| yellow

| d8

| confacial bioctahedral{{cite journal|title=Formation of nona(ethyl isocyanide)diiron from penta(ethyl isocyanide)iron and reaction of penta(tert-butyl isocyanide)iron with diphenylacetylene; x-ray crystal structures of nona(ethyl isocyanide)diiron and tris(tert-butyl isocyanide){1,4-bis-(tert-butylimino)-2,3-diphenylbuta-1,3-diene}iron|author=J.-M. Bassett, M. Green, J. A. K. Howard, F. G. A. Stone|journal=J. Chem. Soc., Chem. Commun.|year=1978|page=1000-1|doi=10.1039/C39780001000}}

| see Fe2(CO)9

[Fe(CNMe)6]2+

| colourless

| d6, 18e

| octahedral

|

[Co2(CN-t-Bu)8]0

| red-orange

| d9

| pentacoordinated with bridging isocyanides{{cite journal |doi=10.1039/C39770000256|title=Synthesis and Reactions of Octakis(t-butyl Isocyanide)dicobalt and Pentakis(t-butyl Isocyanide)ruthenium; X-ray Crystal and Molecular Structures of Co2(ButNC)8 and Ru(Ph3P)(ButNC)4|year=1977|last1=Barker|first1=Geoffrey K.|last2=Galas|first2=Anita M. R.|last3=Green|first3=Michael|last4=Howard|first4=Judith A. K.|last5=Stone|first5=F. Gordon A.|last6=Turney|first6=Terence W.|last7=Welch|first7=Alan J.|last8=Woodward|first8=Peter|journal=Journal of the Chemical Society, Chemical Communications|issue=8|page=256}}

| see Co2(CO)8

[Co(CN-t-Bu)5]+

| yellow

| d8, 18e

| trigonal bipyramidal{{cite journal |doi=10.1021/ic50115a025|title=Isocyanide-metal complexes. I. Reactions of the pentakis(tert-butyl isocyanide)cobalt cation with some tertiary phosphines and arsines|year=1972|last1=King|first1=R. B.|last2=Saran|first2=Mohan Singh|journal=Inorganic Chemistry|volume=11|issue=9|pages=2112–2119}}

|

[Co(CNC6H3-2,6-Me2)4]

| red

| d6, 18e

| tetrahedral{{cite journal |doi=10.1021/ja00098a017|title=Synthesis and Structural Characterization of [Co{CN(2,6-C6H3Me2)], the First Transition Metal Isonitrilate|year=1994|last1=Leach|first1=Patricia A.|last2=Geib|first2=Steven J.|last3=Corella|first3=Joseph A.|last4=Warnock|first4=Garry F.|last5=Cooper|first5=N. John|journal=Journal of the American Chemical Society|volume=116|issue=19|pages=8566–8574}}

| see Co(CO)4

[Ni(CNMe)4]0

| colourless

| d10, 18e

| tetrahedral

| see Ni(CO)4

[Ni(CNC6H3-2,6-iPr2)4]2+

| yellow

| d8

| square planar{{cite journal |doi=10.1107/S0108270188009497|title=The Structure of the Tetrahydrofuran Solvate of Tetrakis(2,6-diisopropylphenylisocyanide)nickel(II) Diperchlorate|year=1989|last1=Kanters|first1=J. A.|last2=Nijs|first2=H. L. L. M.|last3=Van Der Sluis|first3=P.|journal=Acta Crystallographica Section C Crystal Structure Communications|volume=45|pages=16–18}}

| see [Ni(CN)4]2-

[Ni4(CN-t-Bu)7]0

| red

| d10

| cluster{{cite journal |doi=10.1021/ja00842a061|title=Fluxional, Catalytically Active Metal Cluster, Heptakis(tert-butylisocyanide)tetranickel|year=1975|last1=Day|first1=V. W.|last2=Day|first2=R. O.|last3=Kristoff|first3=J. S.|last4=Hirsekorn|first4=F. J.|last5=Muetterties|first5=E. L.|journal=Journal of the American Chemical Society|volume=97|issue=9|pages=2571–2573}}

|

[Cu(CNMe)4]+

| colourless

| d10, 18e

| tetrahedral

| analogous [Cu(CO)4]+ is unknown

{{clear}}

IR spectroscopy

The νC≡N band in isocyanides is intense in the range of 2165–2110 cm−1.{{cite journal | last = Stephany | first = R. W. |author2=de Bie, M. J. A. |author3=Drenth, W. | title = A 13C-NMR and IR study of isocyanides and some of their complexes | journal = Organic Magnetic Resonance | year = 1974 | volume = 6 | issue = 1 | pages = 45–47 | doi = 10.1002/mrc.1270060112}} The value of νC≡N is diagnostic of the electronic character of the complex. In complexes where RNC is primarily a sigma donor ligand, νC≡N shifts to higher energies vs free isocyanide. Thus, for {{chem2|[Co(CN\st\sBu)5]+}}, νC≡N = 2152, 2120 cm−l. In contrast, for the electron-rich species Fe2(CNEt)9, νC≡N = 2060, 1920, 1701, 1652 cm−l.{{cite journal |doi=10.1039/C39780001000|title=Formation of Nona(ethyl isocyanide)di-iron from Penta(ethyl isocyanide)iron and Reaction of Penta(t-butyl isocyanide)iron with Diphenylacetylene; X-ray Crystal Structures of Nona(ethyl Isocyanide)di-iron and Tris(t-butyl isocyanide)]1,4-bis-(t-butylimino)-2,3-diphenylbuta-1,3-diene]iron|year=1978|last1=Bassett|first1=Jean-Marie|last2=Green|first2=Michael|last3=Howard|first3=Judith A. K.|last4=Stone|first4=F. Gordon A.|journal=Journal of the Chemical Society, Chemical Communications|issue=22|page=1000}}

See also

{{clear}}

References

{{Coordination complexes}}

{{isocyanidecomplexes}}

Category:Coordination complexes

Category:Isocyanides