Transport-of-intensity equation

The transport-of-intensity equation (TIE) is a computational approach to reconstruct the phase of a complex wave in optical and electron microscopy.{{Cite book|last=Bostan|first=E.|title=2014 IEEE International Conference on Image Processing (ICIP) |chapter=Phase retrieval by using transport-of-intensity equation and differential interference contrast microscopy |date=2014|doi=10.1109/ICIP.2014.7025800|pages=3939–3943|isbn=978-1-4799-5751-4|s2cid=10310598|chapter-url=http://bigwww.epfl.ch/publications/bostan1401.pdf }} It describes the internal relationship between the intensity and phase distribution of a wave.{{Cite book|last=Cheng|first=H.|title=2009 Fifth International Conference on Image and Graphics |chapter=Phase Retrieval Using the Transport-of-Intensity Equation |date=2009|doi=10.1109/ICIG.2009.32|pages=417–421|isbn=978-1-4244-5237-8|s2cid=15772496}}

The TIE was first proposed in 1983 by Michael Reed Teague.{{Cite journal|last=Teague|first=Michael R.|date=1983|title=Deterministic phase retrieval: a Green's function solution|doi=10.1364/JOSA.73.001434|journal=Journal of the Optical Society of America|volume=73|issue=11|pages=1434–1441}} Teague suggested to use the law of conservation of energy to write a differential equation for the transport of energy by an optical field. This equation, he stated, could be used as an approach to phase recovery.{{Cite journal|last=Nugent|first=Keith|date=2010|title=Coherent methods in the X-ray sciences|doi=10.1080/00018730903270926|journal=Advances in Physics|volume=59|issue=1|pages=1–99|arxiv=0908.3064|bibcode=2010AdPhy..59....1N|s2cid=118519311}}

Teague approximated the amplitude of the wave propagating nominally in the z-direction by a parabolic equation and then expressed it in terms of irradiance and phase:

:\frac{2\pi}{\lambda} \frac{\partial}{\partial z}I(x,y,z)= -\nabla_{x,y} \cdot [I(x,y,z)\nabla_{x,y}\Phi],

where \lambda is the wavelength, I(x,y,z) is the irradiance at point (x,y,z), and \Phi is the phase of the wave. If the intensity distribution of the wave and its spatial derivative can be measured experimentally, the equation becomes a linear equation that can be solved to obtain the phase distribution \Phi.{{Cite journal|last1=Gureyev|first1=T. E.|last2=Roberts|first2=A.|last3=Nugent|first3=K. A.|date=1995|title=Partially coherent fields, the transport-of-intensity equation, and phase uniqueness|journal=JOSA A|volume=12|issue=9|pages=1942–1946|doi=10.1364/JOSAA.12.001942|bibcode=1995JOSAA..12.1942G}}

For a phase sample with a constant intensity, the TIE simplifies to

:\frac{d}{dz}I(z) = -\frac{\lambda}{2\pi} I(z) \nabla_{x,y}^2 \Phi.

It allows measuring the phase distribution of the sample by acquiring a defocused image, i.e. I(x,y,z + \Delta z).

TIE-based approaches are applied in biomedical and technical applications, such as quantitative monitoring of cell growth in culture,{{Cite journal|last=Curl|first=C.L.|date=2004|pmid=14985984|doi=10.1007/s00424-004-1248-7|title=Quantitative phase microscopy: a new tool for measurement of cell culture growth and confluency in situ|journal=Pflügers Archiv: European Journal of Physiology|volume=448|issue=4|pages=462–468|s2cid=7640406}} investigation of cellular dynamics and characterization of optical elements.{{Cite journal|last=Dorrer|first=C.|doi=10.1364/oe.15.007165|date=2007|title=Optical testing using the transport-of-intensity equation|pmid=19547035|journal=Opt. Express|volume=15|issue=12|pages=7165–7175|bibcode=2007OExpr..15.7165D|doi-access=free}} The TIE method  is also applied for phase retrieval in transmission electron microscopy.{{Cite journal|last=Belaggia|first=M.|date=2004|title=On the transport of intensity technique for phase retrieval|url=https://www.researchgate.net/publication/8170033|journal=Ultramicroscopy|pmid=15556699|volume=102|issue=1|pages=37–49|doi=10.1016/j.ultramic.2004.08.004|hdl=11380/1255475|hdl-access=free}}

References