Transvectant

{{Short description|Invariant in mathematics}}

{{No footnotes|date=May 2017}}

In mathematical invariant theory, a transvectant is an invariant formed from n invariants in n variables using Cayley's Ω process.

Definition

If Q1,...,Qn are functions of n variables x = (x1,...,xn) and r ≥ 0 is an integer then the rth transvectant of these functions is a function of n variables given by \operatorname{Tr} \Omega^r(Q_1\otimes\cdots \otimes Q_n)where

\Omega = \begin{vmatrix} \frac{\partial}{\partial x_{11}} & \cdots &\frac{\partial}{\partial x_{1n}} \\ \vdots& \ddots & \vdots\\ \frac{\partial}{\partial x_{n1}} & \cdots &\frac{\partial}{\partial x_{nn}} \end{vmatrix}

is Cayley's Ω process, and the tensor product means take a product of functions with different variables x1,..., xn, and the trace operator Tr means setting all the vectors xk equal.

Examples

The zeroth transvectant is the product of the n functions. \operatorname{Tr} \Omega^0(Q_1\otimes\cdots \otimes Q_n) = \prod_k Q_kThe first transvectant is the Jacobian determinant of the n functions. \operatorname{Tr} \Omega^1(Q_1\otimes\cdots \otimes Q_n) = \det \begin{bmatrix} \partial_k Q_l \end{bmatrix}The second transvectant is a constant times the completely polarized form of the Hessian of the n functions.

When n = 2, the binary transvectants have an explicit formula:{{sfn|Olver|1999|p=88}}\operatorname{Tr} \Omega^k( f \otimes g ) = \sum_{l=0}^k (-1)^l \binom kl \partial_x^{k-l} \partial_y^l f \partial_y^{k-l} \partial_l^l gwhich can be more succinctly written asf \left(\overleftarrow{\partial_{x}} \cdot \overrightarrow{\partial_{y}}-\overleftarrow{\partial_{y}} \cdot \overrightarrow{\partial_{x}}\right)^k gwhere the arrows denote the function to be taken the derivative of. This notation is used in Moyal product.

Applications

{{Math theorem

| math_statement = All polynomial covariants and invariants of any system of binary forms can be expressed as linear combinations of iterated transvectants.

| name = First Fundamental Theorem of Invariant Theory

| note = {{sfn|Olver|1999|p=90}}

}}

References

{{Reflist}}

  • {{Citation | last1=Olver | first1=Peter J. |author1-link=Peter J. Olver | title=Classical invariant theory | publisher=Cambridge University Press | isbn=978-0-521-55821-1 | year=1999}}
  • {{Citation | last1=Olver | first1=Peter J. |author1-link=Peter J. Olver | last2=Sanders | first2=Jan A. | title=Transvectants, modular forms, and the Heisenberg algebra | doi=10.1006/aama.2000.0700 | mr=1783553 | year=2000 | journal=Advances in Applied Mathematics | issn=0196-8858 | volume=25 | issue=3 | pages=252–283| citeseerx=10.1.1.46.803 }}

Category:Invariant theory