Transvectant
{{Short description|Invariant in mathematics}}
{{No footnotes|date=May 2017}}
In mathematical invariant theory, a transvectant is an invariant formed from n invariants in n variables using Cayley's Ω process.
Definition
If Q1,...,Qn are functions of n variables x = (x1,...,xn) and r ≥ 0 is an integer then the rth transvectant of these functions is a function of n variables given bywhere
\Omega = \begin{vmatrix} \frac{\partial}{\partial x_{11}} & \cdots &\frac{\partial}{\partial x_{1n}} \\ \vdots& \ddots & \vdots\\ \frac{\partial}{\partial x_{n1}} & \cdots &\frac{\partial}{\partial x_{nn}} \end{vmatrix}
is Cayley's Ω process, and the tensor product means take a product of functions with different variables x1,..., xn, and the trace operator Tr means setting all the vectors xk equal.
Examples
The zeroth transvectant is the product of the n functions.The first transvectant is the Jacobian determinant of the n functions.The second transvectant is a constant times the completely polarized form of the Hessian of the n functions.
When , the binary transvectants have an explicit formula:{{sfn|Olver|1999|p=88}}which can be more succinctly written aswhere the arrows denote the function to be taken the derivative of. This notation is used in Moyal product.
Applications
{{Math theorem
| math_statement = All polynomial covariants and invariants of any system of binary forms can be expressed as linear combinations of iterated transvectants.
| name = First Fundamental Theorem of Invariant Theory
| note = {{sfn|Olver|1999|p=90}}
}}
References
{{Reflist}}
- {{Citation | last1=Olver | first1=Peter J. |author1-link=Peter J. Olver | title=Classical invariant theory | publisher=Cambridge University Press | isbn=978-0-521-55821-1 | year=1999}}
- {{Citation | last1=Olver | first1=Peter J. |author1-link=Peter J. Olver | last2=Sanders | first2=Jan A. | title=Transvectants, modular forms, and the Heisenberg algebra | doi=10.1006/aama.2000.0700 | mr=1783553 | year=2000 | journal=Advances in Applied Mathematics | issn=0196-8858 | volume=25 | issue=3 | pages=252–283| citeseerx=10.1.1.46.803 }}