Trigonometric substitution

{{short description|Technique of integral evaluation}}

{{Trigonometry}}

{{calculus|expanded=integral}}

In mathematics, a trigonometric substitution replaces a trigonometric function for another expression. In calculus, trigonometric substitutions are a technique for evaluating integrals. In this case, an expression involving a radical function is replaced with a trigonometric one. Trigonometric identities may help simplify the answer.{{cite book | last=Stewart | first=James | author-link=James Stewart (mathematician) | title=Calculus: Early Transcendentals | publisher=Brooks/Cole | edition=6th | year=2008 | isbn=978-0-495-01166-8 | url-access=registration | url=https://archive.org/details/calculusearlytra00stew_1 }}{{cite book | last1 = Thomas | first1 = George B. | last2=Weir | first2= Maurice D. | last3=Hass | first3=Joel | author3-link = Joel Hass | author-link=George B. Thomas | title=Thomas' Calculus: Early Transcendentals | publisher=Addison-Wesley | year=2010 | edition=12th | isbn=978-0-321-58876-0}} Like other methods of integration by substitution, when evaluating a definite integral, it may be simpler to completely deduce the antiderivative before applying the boundaries of integration.

Case I: Integrands containing ''a''<sup>2</sup> − ''x''<sup>2</sup>

Let x = a \sin \theta, and use the identity 1-\sin^2 \theta = \cos^2 \theta.

=Examples of Case I=

==Example 1==

In the integral

\int\frac{dx}{\sqrt{a^2-x^2}},

we may use

x=a\sin \theta,\quad dx=a\cos\theta\, d\theta, \quad \theta=\arcsin\frac{x}{a}.

Then,

\begin{align}

\int\frac{dx}{\sqrt{a^2-x^2}} &= \int\frac{a\cos\theta \,d\theta}{\sqrt{a^2-a^2\sin^2 \theta}} \\[6pt]

&= \int\frac{a\cos\theta\,d\theta}{\sqrt{a^2(1 - \sin^2 \theta )}} \\[6pt]

&= \int\frac{a\cos\theta\,d\theta}{\sqrt{a^2\cos^2\theta}} \\[6pt]

&= \int d\theta \\[6pt]

&= \theta + C \\[6pt]

&= \arcsin\frac{x}{a}+C.

\end{align}

The above step requires that a > 0 and \cos \theta > 0. We can choose a to be the principal root of a^2, and impose the restriction -\pi /2 < \theta < \pi /2 by using the inverse sine function.

For a definite integral, one must figure out how the bounds of integration change. For example, as x goes from 0 to a/2, then \sin \theta goes from 0 to 1/2, so \theta goes from 0 to \pi / 6. Then,

\int_0^{a/2}\frac{dx}{\sqrt{a^2-x^2}}=\int_0^{\pi/6} d\theta = \frac{\pi}{6}.

Some care is needed when picking the bounds. Because integration above requires that -\pi /2 < \theta < \pi /2 , \theta can only go from 0 to \pi / 6. Neglecting this restriction, one might have picked \theta to go from \pi to 5\pi /6, which would have resulted in the negative of the actual value.

Alternatively, fully evaluate the indefinite integrals before applying the boundary conditions. In that case, the antiderivative gives

\int_{0}^{a/2} \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \left( \frac{x}{a} \right) \Biggl|_{0}^{a/2}

= \arcsin \left ( \frac{1}{2}\right) - \arcsin (0) = \frac{\pi}{6} as before.

==Example 2==

The integral

\int\sqrt{a^2-x^2}\,dx,

may be evaluated by letting x=a\sin \theta,\, dx=a\cos\theta\, d\theta,\, \theta=\arcsin\dfrac{x}{a}, where a > 0 so that \sqrt{a^2}=a, and -\pi/2 \le \theta \le \pi/2 by the range of arcsine, so that \cos \theta \ge 0 and \sqrt{\cos^2 \theta} = \cos \theta.

Then,

\begin{align}

\int\sqrt{a^2-x^2}\,dx &= \int\sqrt{a^2-a^2\sin^2\theta}\,(a\cos\theta) \,d\theta \\[6pt]

&= \int\sqrt{a^2(1-\sin^2\theta)}\,(a\cos\theta) \,d\theta \\[6pt]

&= \int\sqrt{a^2(\cos^2\theta)}\,(a\cos\theta) \,d\theta \\[6pt]

&= \int(a\cos\theta)(a\cos\theta) \,d\theta \\[6pt]

&= a^2\int\cos^2\theta\,d\theta \\[6pt]

&= a^2\int\left(\frac{1+\cos 2\theta}{2}\right)\,d\theta \\[6pt]

&= \frac{a^2}{2} \left(\theta+\frac{1}{2}\sin 2\theta \right) + C \\[6pt]

&= \frac{a^2}{2}(\theta+\sin\theta\cos\theta) + C \\[6pt]

&= \frac{a^2}{2}\left(\arcsin\frac{x}{a}+\frac{x}{a}\sqrt{1-\frac{x^2}{a^2}}\right) + C \\[6pt]

&= \frac{a^2}{2}\arcsin\frac{x}{a}+\frac{x}{2}\sqrt{a^2-x^2}+C.

\end{align}

For a definite integral, the bounds change once the substitution is performed and are determined using the equation \theta = \arcsin\dfrac{x}{a}, with values in the range -\pi/2 \le \theta \le \pi/2. Alternatively, apply the boundary terms directly to the formula for the antiderivative.

For example, the definite integral

\int_{-1}^1\sqrt{4-x^2}\,dx,

may be evaluated by substituting x = 2\sin\theta, \,dx = 2\cos\theta\,d\theta, with the bounds determined using \theta = \arcsin\dfrac{x}{2}.

Because \arcsin(1/{2}) = \pi/6 and \arcsin(-1/2) = -\pi/6,

\begin{align}

\int_{-1}^1\sqrt{4-x^2}\,dx &= \int_{-\pi/6}^{\pi/6}\sqrt{4-4\sin^2\theta}\,(2\cos\theta) \,d\theta \\[6pt]

&= \int_{-\pi/6}^{\pi/6}\sqrt{4(1-\sin^2\theta)}\,(2\cos\theta) \,d\theta \\[6pt]

&= \int_{-\pi/6}^{\pi/6}\sqrt{4(\cos^2\theta)}\,(2\cos\theta) \,d\theta \\[6pt]

&= \int_{-\pi/6}^{\pi/6}(2\cos\theta)(2\cos\theta) \,d\theta \\[6pt]

&= 4\int_{-\pi/6}^{\pi/6}\cos^2\theta\,d\theta \\[6pt]

&= 4\int_{-\pi/6}^{\pi/6}\left(\frac{1+\cos 2\theta}{2}\right)\,d\theta \\[6pt]

&= 2 \left[\theta+\frac{1}{2} \sin 2\theta \right]^{\pi/6}_{-\pi/6}

= [2\theta+\sin 2\theta] \Biggl |^{\pi/6}_{-\pi/6} \\[6pt]

&= \left(\frac{\pi}{3}+\sin\frac{\pi}{3}\right)-\left(-\frac{\pi}{3}+\sin\left(-\frac{\pi}{3}\right)\right)

= \frac{2\pi}{3}+\sqrt{3}.

\end{align}

On the other hand, direct application of the boundary terms to the previously obtained formula for the antiderivative yields

\begin{align}

\int_{-1}^1\sqrt{4-x^2}\,dx &= \left[ \frac{2^2}{2}\arcsin\frac{x}{2}+\frac{x}{2}\sqrt{2^2-x^2} \right]_{-1}^{1}\\[6pt]

&= \left( 2 \arcsin \frac{1}{2} + \frac{1}{2}\sqrt{4-1}\right) - \left( 2 \arcsin \left(-\frac{1}{2}\right) + \frac{-1}{2}\sqrt{4-1}\right)\\[6pt]

&= \left( 2 \cdot \frac{\pi}{6} + \frac{\sqrt{3}}{2}\right) - \left( 2\cdot \left(-\frac{\pi}{6}\right) - \frac{\sqrt 3}{2}\right)\\[6pt]

&= \frac{2\pi}{3} + \sqrt{3}

\end{align}

as before.

Case II: Integrands containing ''a''<sup>2</sup> + ''x''<sup>2</sup>

Let x = a \tan \theta, and use the identity 1+\tan^2 \theta = \sec^2 \theta.

=Examples of Case II=

==Example 1==

In the integral

\int\frac{dx}{a^2+x^2}

we may write

x=a\tan\theta,\quad dx=a\sec^2\theta\, d\theta, \quad \theta=\arctan\frac{x}{a},

so that the integral becomes

\begin{align}

\int\frac{dx}{a^2+x^2} &= \int\frac{a\sec^2\theta\, d\theta}{a^2 + a^2\tan^2\theta} \\[6pt]

&= \int\frac{a\sec^2\theta\, d\theta}{a^2(1+\tan^2\theta)} \\[6pt]

&= \int\frac{a\sec^2\theta\, d\theta}{a^2\sec^2\theta} \\[6pt]

&= \int\frac{d\theta}{a} \\[6pt]

&= \frac{\theta}{a}+C \\[6pt]

&= \frac{1}{a} \arctan \frac{x}{a} + C,

\end{align}

provided a \neq 0.

For a definite integral, the bounds change once the substitution is performed and are determined using the equation \theta = \arctan\frac{x}{a}, with values in the range -\frac{\pi}{2} < \theta < \frac{\pi}{2}. Alternatively, apply the boundary terms directly to the formula for the antiderivative.

For example, the definite integral

\int_0^1\frac{4\, dx}{1+x^2}\,

may be evaluated by substituting x = \tan\theta, \,dx = \sec^2\theta\,d\theta, with the bounds determined using \theta = \arctan x.

Since \arctan 0 = 0 and \arctan 1 = \pi/4,

\begin{align}

\int_0^1\frac{4\,dx}{1+x^2} &= 4\int_0^1\frac{dx}{1 + x^2} \\[6pt]

&= 4\int_0^{\pi/4}\frac{\sec^2\theta\, d\theta}{1+\tan^2\theta} \\[6pt]

&= 4\int_0^{\pi/4}\frac{\sec^2\theta\, d\theta}{\sec^2\theta} \\[6pt]

&= 4\int_0^{\pi/4}d\theta \\[6pt]

&= (4\theta)\Bigg|^{\pi/4}_0 = 4 \left (\frac{\pi}{4} - 0 \right) = \pi.

\end{align}

Meanwhile, direct application of the boundary terms to the formula for the antiderivative yields

\begin{align}

\int_0^1\frac{4\,dx}{1+x^2}\,

&= 4\int_0^1\frac{dx}{1+x^2} \\[6pt]

&= 4\left[\frac{1}{1} \arctan \frac{x}{1} \right]^1_0 \\[6pt]

&= 4(\arctan x)\Bigg|^1_0 \\[6pt]

&= 4(\arctan 1 - \arctan 0) \\[6pt]

&= 4 \left (\frac{\pi}{4} - 0 \right) = \pi,

\end{align}

same as before.

==Example 2==

The integral

\int\sqrt{a^2+x^2}\,{dx}

may be evaluated by letting x=a\tan\theta,\, dx=a\sec^2\theta\, d\theta, \, \theta=\arctan\frac{x}{a},

where a > 0 so that \sqrt{a^2}=a, and -\frac{\pi}{2}<\theta<\frac{\pi}{2} by the range of arctangent, so that \sec \theta > 0 and \sqrt{\sec^2 \theta} = \sec \theta.

Then,

\begin{align}

\int\sqrt{a^2+x^2}\,dx &= \int\sqrt{a^2 + a^2\tan^2\theta}\,(a \sec^2\theta)\, d\theta \\[6pt]

&= \int\sqrt{a^2 (1+\tan^2\theta)}\,(a \sec^2\theta)\, d\theta \\[6pt]

&= \int\sqrt{a^2 \sec^2\theta}\,(a \sec^2\theta)\, d\theta \\[6pt]

&= \int(a \sec\theta)(a \sec^2\theta)\, d\theta \\[6pt]

&= a^2\int \sec^3\theta\, d\theta. \\[6pt]

\end{align}

The integral of secant cubed may be evaluated using integration by parts. As a result,

\begin{align}

\int\sqrt{a^2+x^2}\,dx &= \frac{a^2}{2}(\sec\theta \tan\theta + \ln|\sec\theta+\tan\theta|)+C \\[6pt]

&= \frac{a^2}{2}\left(\sqrt{1+\frac{x^2}{a^2}}\cdot\frac{x}{a} + \ln\left|\sqrt{1+\frac{x^2}{a^2}}+\frac{x}{a}\right|\right)+C \\[6pt]

&= \frac{1}{2}\left(x\sqrt{a^2+x^2} + a^2\ln\left|\frac{x+\sqrt{a^2+x^2}}{a}\right|\right)+C.

\end{align}

Case III: Integrands containing ''x''<sup>2</sup> − ''a''<sup>2</sup>

Let x = a \sec \theta, and use the identity \sec^2 \theta -1 = \tan^2 \theta.

=Examples of Case III=

File:Trig Sub Triangle 3.png

Integrals such as

\int\frac{dx}{x^2 - a^2}

can also be evaluated by partial fractions rather than trigonometric substitutions. However, the integral

\int\sqrt{x^2 - a^2}\, dx

cannot. In this case, an appropriate substitution is:

x = a \sec\theta,\, dx = a \sec\theta\tan\theta\, d\theta, \, \theta = \arcsec\frac{x}{a},

where a > 0 so that \sqrt{a^2}=a, and 0 \le \theta < \frac{\pi}{2} by assuming x > 0, so that \tan \theta \ge 0 and \sqrt{\tan^2 \theta} = \tan \theta.

Then,

\begin{align}

\int\sqrt{x^2 - a^2}\, dx &= \int\sqrt{a^2 \sec^2\theta - a^2} \cdot a \sec\theta\tan\theta\, d\theta \\

&= \int\sqrt{a^2 (\sec^2\theta - 1)} \cdot a \sec\theta\tan\theta\, d\theta \\

&= \int\sqrt{a^2 \tan^2\theta} \cdot a \sec\theta\tan\theta\, d\theta \\

&= \int a^2 \sec\theta\tan^2\theta\, d\theta \\

&= a^2 \int (\sec\theta)(\sec^2\theta - 1)\, d\theta \\

&= a^2 \int (\sec^3\theta - \sec\theta)\, d\theta.

\end{align}

One may evaluate the integral of the secant function by multiplying the numerator and denominator by ( \sec \theta + \tan \theta) and the integral of secant cubed by parts.{{Cite book|last=Stewart|first=James|title=Calculus - Early Transcendentals|publisher=Cengage Learning|year=2012|isbn=978-0-538-49790-9|location=United States|pages=475–6|chapter=Section 7.2: Trigonometric Integrals|author-link=James Stewart (mathematician)}} As a result,

\begin{align}

\int\sqrt{x^2-a^2}\,dx &= \frac{a^2}{2}(\sec\theta \tan\theta + \ln|\sec\theta+\tan\theta|)-a^2\ln|\sec\theta+\tan\theta|+C \\[6pt]

&= \frac{a^2}{2}(\sec\theta \tan\theta - \ln|\sec\theta+\tan\theta|)+C \\[6pt]

&= \frac{a^2}{2}\left(\frac{x}{a}\cdot\sqrt{\frac{x^2}{a^2}-1} - \ln\left|\frac{x}{a}+\sqrt{\frac{x^2}{a^2}-1}\right|\right)+C \\[6pt]

&= \frac{1}{2}\left(x\sqrt{x^2-a^2} - a^2\ln\left|\frac{x+\sqrt{x^2-a^2}}{a}\right|\right)+C.

\end{align}

When \frac{\pi}{2} < \theta \le \pi, which happens when x < 0 given the range of arcsecant, \tan \theta \le 0, meaning \sqrt{\tan^2 \theta} = -\tan \theta instead in that case.

Substitutions that eliminate trigonometric functions

Substitution can be used to remove trigonometric functions.

For instance,

\begin{align}

\int f(\sin(x), \cos(x))\, dx &=\int\frac1{\pm\sqrt{1-u^2}} f\left(u,\pm\sqrt{1-u^2}\right)\, du && u=\sin (x) \\[6pt]

\int f(\sin(x), \cos(x))\, dx &=\int\frac{1}{\mp\sqrt{1-u^2}} f\left(\pm\sqrt{1-u^2},u\right)\, du && u=\cos (x) \\[6pt]

\int f(\sin(x), \cos(x))\, dx &=\int\frac2{1+u^2} f \left(\frac{2u}{1+u^2},\frac{1-u^2}{1+u^2}\right)\, du && u=\tan\left (\frac{x}{2} \right ) \\[6pt]

\end{align}

The last substitution is known as the Weierstrass substitution, which makes use of tangent half-angle formulas.

For example,

\begin{align}

\int\frac{4 \cos x}{(1+\cos x)^3}\, dx &= \int\frac2{1+u^2}\frac{4\left(\frac{1-u^2}{1+u^2}\right)}{\left(1+\frac{1-u^2}{1+u^2}\right)^3}\, du = \int (1-u^2)(1+u^2)\, du \\&= \int (1-u^4)\,du = u - \frac{u^5}{5} + C = \tan \frac{x}{2} - \frac{1}{5} \tan^5 \frac{x}{2} + C.

\end{align}

Hyperbolic substitution

Substitutions of hyperbolic functions can also be used to simplify integrals.{{cite web|last=Boyadzhiev|first=Khristo N.|title=Hyperbolic Substitutions for Integrals|url=http://www2.onu.edu/~m-caragiu.1/bonus_files/HYPERSUB.pdf|access-date=4 March 2013|archive-date=26 February 2020|archive-url=https://web.archive.org/web/20200226040813/http://www2.onu.edu/~m-caragiu.1/bonus_files/HYPERSUB.pdf|url-status=dead}}

For example, to integrate 1/\sqrt{a^2+x^2}, introduce the substitution x=a\sinh{u} (and hence dx=a\cosh u \,du), then use the identity \cosh^2 (x) - \sinh^2 (x) = 1 to find:

\begin{align}

\int \frac{dx}{\sqrt{a^2+x^2}} &= \int \frac{a\cosh u \,du}{\sqrt{a^2+a^2\sinh^2 u}} \\[6pt]

&=\int \frac{\cosh{u} \,du}{\sqrt{1+\sinh^2{u}}} \\[6pt]

&=\int \frac{\cosh{u}}{\cosh u} \,du \\[6pt]

&=u+C \\[6pt]

&=\sinh^{-1}{\frac{x}{a}} + C.

\end{align}

If desired, this result may be further transformed using other identities, such as using the relation \sinh^{-1}{z} = \operatorname{arsinh}{z} = \ln(z + \sqrt{z^2 + 1}):

\begin{align}

\sinh^{-1}{\frac{x}{a}} + C

&=\ln\left(\frac{x}{a} + \sqrt{\frac{x^2}{a^2} + 1}\,\right) + C \\[6pt]

&=\ln\left(\frac{x + \sqrt{x^2+a^2}}{a}\,\right) + C.

\end{align}

See also

{{Portal|Mathematics}}

{{Wikiversity|Trigonometric Substitutions}}

{{Wikibooks|Calculus/Integration techniques/Trigonometric Substitution}}

References

{{reflist}}

{{DEFAULTSORT:Trigonometric Substitution}}

{{Integrals}}

Category:Integral calculus

Category:Trigonometry