Tris(trimethylsilyl)amine
{{Chembox
| Name =
| ImageFile = Tris(trimethylsilyl)amin Strukturformel.svg
| ImageSize = 150px
| ImageAlt =
| PIN = 1,1,1-Trimethyl-N,N-bis(trimethylsilyl)silanamine
| OtherNames =
| Section1 = {{Chembox Identifiers
| CASNo = 1586-73-8
| CASNo_Ref = {{cascite|correct|CAS}}
| UNII_Ref = {{fdacite|correct|FDA}}
| UNII = SVA5FGS9US
| PubChem = 74110
| EINECS = 216-445-0
| ChemSpiderID = 66724
| SMILES = C[Si](C)(C)N([Si](C)(C)C)[Si](C)(C)C
| StdInChI = 1S/C9H27NSi3/c1-11(2,3)10(12(4,5)6)13(7,8)9/h1-9H3
| StdInChIKey = PEGHITPVRNZWSI-UHFFFAOYSA-N
}}
| Section2 = {{Chembox Properties
| Formula = C9H27NSi3
| MolarMass = 233.57g/mol
| Appearance = Waxy solid
| Density =
| MeltingPt = 67–69°C
| BoilingPt = 215°C (85°C at 13mmHg)
| SolubleOther = Nonpolar organic solvents
}}
| Section3 = {{Chembox Hazards
| MainHazards =
| FlashPt =
| AutoignitionPt =
}}
| Section4 =
| Section5 =
| Section6 =
}}
Tris(trimethylsilyl)amine is the simplest tris(trialkylsilyl)amine which are having the general formula (R3Si)3N, in which all three hydrogen atoms of the ammonia are replaced by trimethylsilyl groups (-Si(CH3)3).{{citation|surname1=J. Goubeau, J. Jiminéz-Barberá|periodical=ZAAC|title=Tris-(trimethylsilyl)-amin|volume=303|issue=5–6|pages=217–226|date= 1960|language=German|doi=10.1002/zaac.19603030502}} Tris(trimethylsilyl)amine has been for years in the center of scientific interest as a stable intermediate in chemical nitrogen fixation (i. e. the conversion of atmospheric nitrogen N2 into organic substrates under normal conditions).{{citation|surname1=K. Shiina|periodical=J. Am. Chem. Soc.|title=Reductive silylation of molecular nitrogen via fixation to tris(trimethylsilyl)amine|volume=94|issue=26|pages=9266–9267|date= 1972|doi=10.1021/ja00781a068}}{{citation|surname1=K.C. MacLeod, P.L. Holland|periodical=Nature Chemistry|title=Recent developments in the homogeneous reduction of dinitrogen by molybdenum and iron|volume=5|pages=559–565|date= 2013|issue=7 |doi=10.1038/nchem.1620|pmc=3868624|pmid=23787744|bibcode=2013NatCh...5..559M }}{{citation|surname1=W.I. Dzik|periodical=Inorganics|title=Silylation of dinitrogen catalyzed by hydridodinitrogen(triphenylphosphine) cobalt (I)|volume=4|issue=3|pages=21|date= 2016|doi=10.3390/inorganics4030021|doi-access=free}}
Production
Early attempts to prepare tris(trimethylsilyl)amine from ammonia and trimethylchlorosilane (TMS-Cl) were unsuccessful even at temperatures of 500 °C and in the presence of the base pyridine.{{citation|surname1=R.O. Sauer|periodical=J. Am. Chem. Soc.|title=Derivatives of the methylchlorosilanes. I. Trimethylsilanol and its simple ethers|volume=66|issue=10|pages=1707–1710|date= 1944|doi=10.1021/ja01238a030}}{{citation|surname1=R.O. Sauer, R.H. Hasek|periodical=J. Am. Chem. Soc.|title=Derivatives of the methylchlorosilanes. IV. Amines|volume=68|issue=2|pages=241–244|date= 1946|doi=10.1021/ja01206a028}} The reaction of ammonia and trimethylchlorosilane stops at the stage of the doubly silylated product bis(trimethylsilyl)amine (usually referred to as hexamethyldisilazane, HMDS).
Tris(trimethylsilyl)amine is obtained by reaction of the sodium salt of hexamethyldisilazane - from hexamethyldisilazane and sodium amide or from hexamethyldisilazane, sodium and styrene - with trimethylchlorosilane in 80% yield.{{citation|surname1=U. Wannagat, H. Niederprüm|periodical=Chem. Ber.|title=Beiträge zur Chemie der Silicium-Stickstoff-Verbindungen, XIII. Silylsubstituierte Alkaliamide|volume=94|issue=6|pages=1540–1547|date= 1961|language=German|doi=10.1002/cber.19610940618}}
:
\ce{[(CH3)3Si]2NH ->[+\ce{NaNH2}][-\ce{NH3}] NaN[Si(CH3)3]2 ->[+\ce{ClSi(CH3)3}][-\ce{NaCl}] N[Si(CH3)3]3}\\
{}\end{matrix}
The lithium salt of hexamethyldisilazane - from hexamethyldisilazane and butyllithium{{citation|surname1=E.H. Amonoo-Neizer, R.A. Shaw, D.O. Skovlin, B.C. Smith, J.W. Rosenthal, W.L. Jolly|editor-surname1=H.F. Holtzlow|title=Lithium Bis(trimethylsilyl)amide and Tris(trimethylsilyl)amine, in Inorganic Syntheses|volume=8|publisher=John Wiley & Sons, Inc.|publication-place=Hoboken, NJ, USA|pages=19–22|isbn=9780470131671|date= 1966|doi=10.1002/9780470132395.ch5}} or from hexamethyldisilazane and phenyllithium - reacts with trimethylchlorosilane only in yields of 50-60% to tris(trimethylsilyl)amine.
The reaction of lithium nitride with trimethylchlorosilane can be carried out as a one-pot reaction in THF with 72% yield.{{citation|surname1=W.L. Lehn|periodical=J. Am. Chem. Soc.|title=Preparation of tris(trimethylsilyl)- and tris(trimethylstannyl)amines|volume=86|issue=2|pages=305|date= 1964|doi=10.1021/ja01056a057}}
:
Properties
Tris(trimethylsilyl)amine is a colorless, crystalline{{Sigma-Aldrich|Aldrich|360120|Name= Tris(trimethylsilyl)amine 98% |Datum=28. Dezember 2016}}{{Alfa|L04361|Name=Nonamethyltrisilazane| Datum=28. Dezember 2016}} or waxy{{citation|surname1=C.R. Krüger, H. Niederprüm, M. Schmidt, O. Scherer|editor-surname1=H.F. Holtzlow|title=Sodium Bis(trimethylsilyl)amide and Tris(trimethylsilyl)amine, in Inorganic Syntheses|volume=8|publisher=John Wiley & Sons, Inc.|publication-place=Hoboken, NJ, USA|pages=15–19|isbn=9780470131671|date= 1966|doi=10.1002/9780470132395.ch5}} solid which is stable to water and bases.{{citation|surname1=U. Wannagat, H. Niederprüm|periodical=ZAAC|title=dreifach silylierte Amine|volume=308|issue=1–6|pages=337–351|date= 1961|language=German|doi=10.1002/zaac.19613080135}} Alcohols or acids though cleave the Si-N-bond under formation of ammonia.
Applications
= Tris(trimethylsilyl)amine as a synthetic building block =
From antimony trichloride and tris(trimethylsilyl)amine, a nitridoantimone cubane-type cluster can be formed almost quantitatively at –60 °C.{{citation|surname1=M. Rhiel, F. Weller, J. Pebler, K. Dehnicke|periodical=Angew. Chem.|title=[SbN(SbCl)3(NSbCl2)(NSiMe3)3·SbCl3], ein ungewöhnlicher Nitridoantimonkomplex mit Heterocubanstruktur|volume=106|issue=5|pages=599–600|date= 1994|language=German|doi=10.1002/ange.19941060519|bibcode=1994AngCh.106..599R }}
Ketones can be trifluoromethylated in the presence of P4-t-Bu and nonamethyltrisilazane under mild conditions in yields of up to 84% with the inert fluoroform (HCF3, HFC-23).{{citation|surname1=S. Okusu, K. Hirano, E. Tokunaga, N. Shibata|periodical=ChemistryOpen|title=Organocatalyzed trifluormethylation of ketones and sulfonyl fluorides by fluoroform under a superbase system|volume=4|pages=581–585|date= 2015|issue=5 |doi=10.1002/open.201500160|pmc=4608523|pmid=26491635}}
The monomer trichloro(trimethylsilyl)-phosphoranimine Cl3P=NSiMe3 is formed from tris(trimethylsilyl)amine and phosphorus pentachloride in hexane at 0 °C,
File:Synthese von Trichlor(trimethylsilyl)phosphoranimin.svg
which can be polymerized to linear polydichlorophosphazenes with defined molecular weights and polydispersities.{{Cite patent|country =US |number =5698664 |title=Synthesis of polyphosphazenes with controlled molecular weight and polydispersity |pubdate =1997-12-16 |fdate =1995-4-26 |inventor =H.R. Allcock, C.T. Morrissey, I. Manners, C.H. Honeyman | assign= The Penn State Research Foundation, University of Toronto}}
The cyclic trimer (NPCl2)3 hexachlorocyclotriphosphane is predominantly formed from tris(trimethylsilyl)amine and phosphorus pentachloride in boiling dichloromethane (about 40 °C) among other oligomers which gives upon heating over 250 °C high molecular weight, little defined polydichlorophosphazenes.
File:Synthese von Hexachlorcyclotriphosphan.svg
Nitrogen trifluoride NF3 (which is used, inter alia, for the plasma etching of silicon wafers) is obtainable from tris(trimethylsilyl)amine and fluorine at –40 °C in acetonitrile, suppressing the formation of nitrogen and tetrafluorohydrazine, which are produced as undesirable by-products during the standard synthesis of nitrogen trifluoride from ammonia or ammonium fluoride.{{Cite patent|country =US |number =8163262 |title=Method for production of nitrogen fluoride from trimethylsilylamines |pubdate =2012-4-24 |fdate =2011-1-4 |inventor =B. A. Omotowa}}
= Tris(trimethylsilyl)amine intermediate in chemical nitrogen fixation =
The technical nitrogen fixation was made possible by the Haber-Bosch process, in which nitrogen is converted into ammonia by reductive protonation in the presence of iron catalysts under high pressures (> 150 bar) and temperatures (> 400 °C). In chemical nitrogen fixation (i.e., the transformation of atmospheric nitrogen under normal conditions into reactive starting materials for chemical syntheses, usually also ammonia), tris(trimethylsilyl)amine plays an important role in the so-called reductive silylation, since it is hydrolyzed with water to ammonia.
:
\begin{cases}
\ce{->[\ce{H+}]} &\ce{2NH3}\\{}\\
\ce{->[\ce{R3Si-X}][-\,\ce{X-}]} &\ce{2N(SiR3)3}
\end{cases}
As early as 1895 it was observed that metallic lithium reacts with nitrogen to lithium nitride at room temperature.{{citation|surname1=H. Deslandres|periodical=Comptes rendus|title=Absorption de l'azote par le lithium à froid|volume=121|pages=886–887|date= 1895|url=http://gallica.bnf.fr/ark:/12148/bpt6k3077p/f887.item.r=Deslandres.zoom}} In 1972, K. Shiina observed that lithium (as an electron donor) forms with trimethylsilyl chloride under darkening tris(trimethylsilyl)amine in the presence of chromium(III) chloride as a catalyst at room temperature with the nitrogen used for inerting.
:
More recently, for the reductive silylation of N2, sodium has been used instead of lithium as the electron donor and molybdenum{{citation|surname1=Q. Liao, N. Saffon-Merceron, N. Mézailles|periodical=ACS Catal.|title=N2 reduction into silylamine at tridentate phosphine/Mo center: catalysis and mechanistic study|volume=5|issue=11|pages=6902–6906|date= 2015|doi=10.1021/acscatal.5b01626}} and iron compounds (such as pentacarbonyl iron or ferrocenes{{citation|surname1=M. Yuki, H. Tanaka, K. Sasaki, Y. Miyake, K. Yoshizawa, Y. Nishibayashi|periodical=Nature Communications|title=Iron-catalyzed transformation of molecular dinitrogen into silylamine under ambient conditions|volume=3|pages=1254|date= 2012|doi=10.1038/ncomms2264|pmid=23212383 |bibcode=2012NatCo...3.1254Y |doi-access=free}}) as catalysts, up to 34 equivalents of N(Me3Si)3 could be obtained per iron atom in the catalyst.
:
With a molybdenum-ferrocene complex as catalyst, a turnover number of up to 226 could be achieved.{{citation|surname1=H. Tanaka|display-authors=etal|periodical=J. Am. Chem. Soc.|title=Molybdenum-Catalyzed Transformation of Molecular Dinitrogen into Silylamine: Experimental and DFT Study on the Remarkable Role of Ferrocenyldiphosphine Ligands|volume=133|issue=10|pages=3498–3506|date= 2011|doi=10.1021/ja109181n|pmid=21341772 }}
:
{\color{Red}\ce{N}}{\color{NavyBlue}\ce{(Me3Si)3}}
The catalytic productivity of the catalysts for chemical nitrogen fixation developed so far is, despite intensive research,{{citation|surname1=Y. Nishibayashi|periodical=Inorg. Chem.|title=Recent progress in transition-metal-catalyzed reduction of molecular dinitrogen under ambient reaction conditions|volume=54|issue=19|pages=9234–9247|date= 2015|doi=10.1021/acs.inorgchem.5b00881|pmid=26131967 }} still by magnitude smaller than, for example, the modern polymerization catalysts of the metallocene type or enzymes.