Truncated 6-orthoplexes#Truncated 6-orthoplex
class=wikitable align=right width=400 style="margin-left:1em;" |
align=center valign=top
|100px |100px |100px |rowspan=2 valign=center|100px |
align=center valign=top
|100px |100px |100px |
colspan=4|Orthogonal projections in B6 Coxeter plane |
---|
In six-dimensional geometry, a truncated 6-orthoplex is a convex uniform 6-polytope, being a truncation of the regular 6-orthoplex.
There are 5 degrees of truncation for the 6-orthoplex. Vertices of the truncated 6-orthoplex are located as pairs on the edge of the 6-orthoplex. Vertices of the bitruncated 6-orthoplex are located on the triangular faces of the 6-orthoplex. Vertices of the tritruncated 6-orthoplex are located inside the tetrahedral cells of the 6-orthoplex.
{{TOC left}}
{{-}}
Truncated 6-orthoplex
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Truncated 6-orthoplex | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t{3,3,3,3,4} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node_1|3|node|3|node|3|node|4|node}} {{CDD|node_1|3|node_1|3|node|3|node|split1|nodes}} |
bgcolor=#e7dcc3|5-faces | 76 |
bgcolor=#e7dcc3|4-faces | 576 |
bgcolor=#e7dcc3|Cells | 1200 |
bgcolor=#e7dcc3|Faces | 1120 |
bgcolor=#e7dcc3|Edges | 540 |
bgcolor=#e7dcc3|Vertices | 120 |
bgcolor=#e7dcc3|Vertex figure | 80px ( )v{3,4} |
bgcolor=#e7dcc3|Coxeter groups | B6, [3,3,3,3,4] D6, [33,1,1] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Truncated hexacross
- Truncated hexacontatetrapeton (Acronym: tag) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/tag.htm (x3x3o3o3o4o - tag)]}}
= Construction =
There are two Coxeter groups associated with the truncated hexacross, one with the C6 or [4,3,3,3,3] Coxeter group, and a lower symmetry with the D6 or [33,1,1] Coxeter group.
= Coordinates =
Cartesian coordinates for the vertices of a truncated 6-orthoplex, centered at the origin, are all 120 vertices are sign (4) and coordinate (30) permutations of
: (±2,±1,0,0,0,0)
= Images =
{{6-cube Coxeter plane graphs|t45|150}}
Bitruncated 6-orthoplex
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Bitruncated 6-orthoplex | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | 2t{3,3,3,3,4} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node|3|node_1|3|node_1|3|node|3|node|4|node}} {{CDD|node|3|node_1|3|node_1|3|node|split1|nodes}} |
bgcolor=#e7dcc3|5-faces | |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | |
bgcolor=#e7dcc3|Vertices | |
bgcolor=#e7dcc3|Vertex figure | 80px { }v{3,4} |
bgcolor=#e7dcc3|Coxeter groups | B6, [3,3,3,3,4] D6, [33,1,1] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Bitruncated hexacross
- Bitruncated hexacontatetrapeton (Acronym: botag) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/botag.htm (o3x3x3o3o4o - botag)]}}
= Images =
{{6-cube Coxeter plane graphs|t34|150}}
Related polytopes
These polytopes are a part of a set of 63 uniform 6-polytopes generated from the B6 Coxeter plane, including the regular 6-cube or 6-orthoplex.
{{Hexeract family}}
Notes
{{reflist}}
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, [https://www.wiley.com/en-us/Kaleidoscopes-p-9780471010036 wiley.com], {{isbn|978-0-471-01003-6}}
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- {{KlitzingPolytopes|polypeta.htm|6D uniform polytopes (polypeta) with acronyms}} x3x3o3o3o4o - tag, o3x3x3o3o4o - botag {{sfn whitelist| CITEREFKlitzing}}
External links
- [https://web.archive.org/web/20070310205351/http://members.cox.net/hedrondude/topes.htm Polytopes of Various Dimensions]
- [http://tetraspace.alkaline.org/glossary.htm Multi-dimensional Glossary]
{{polytopes}}