Truncated 8-simplexes#Tritruncated 8-simplex
class=wikitable align=right width=360 style="margin-left:1em;" |
align=center
|120px |120px |120px |
align=center
|120px |120px |120px |
colspan=3|Orthogonal projections in A8 Coxeter plane |
---|
In eight-dimensional geometry, a truncated 8-simplex is a convex uniform 8-polytope, being a truncation of the regular 8-simplex.
There are four unique degrees of truncation. Vertices of the truncation 8-simplex are located as pairs on the edge of the 8-simplex. Vertices of the bitruncated 8-simplex are located on the triangular faces of the 8-simplex. Vertices of the tritruncated 8-simplex are located inside the tetrahedral cells of the 8-simplex.
{{clear}}
Truncated 8-simplex
class="wikitable" align="right" style="margin-left:10px" width="250"
! style="background:#e7dcc3;" colspan="2"|Truncated 8-simplex | |
style="background:#e7dcc3;"|Type | uniform 8-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t{37} |
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node_1|3|node|3|node|3|node|3|node|3|node|3|node}} |
style="background:#e7dcc3;"|7-faces | |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 288 |
style="background:#e7dcc3;"|Vertices | 72 |
style="background:#e7dcc3;"|Vertex figure | ( )v{3,3,3,3,3} |
style="background:#e7dcc3;"|Coxeter group | A8, [37], order 362880 |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names=
- Truncated enneazetton (Acronym: tene) (Jonathan Bowers)Klitizing, (x3x3o3o3o3o3o3o - tene)
= Coordinates =
The Cartesian coordinates of the vertices of the truncated 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,0,0,0,1,2). This construction is based on facets of the truncated 9-orthoplex.
= Images =
{{8-simplex Coxeter plane graphs|t01|120}}
Bitruncated 8-simplex
class="wikitable" align="right" style="margin-left:10px" width="250"
! style="background:#e7dcc3;" colspan="2"|Bitruncated 8-simplex | |
style="background:#e7dcc3;"|Type | uniform 8-polytope |
style="background:#e7dcc3;"|Schläfli symbol | 2t{37} |
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams | {{CDD|node|3|node_1|3|node_1|3|node|3|node|3|node|3|node|3|node}} |
style="background:#e7dcc3;"|7-faces | |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 1008 |
style="background:#e7dcc3;"|Vertices | 252 |
style="background:#e7dcc3;"|Vertex figure | { }v{3,3,3,3} |
style="background:#e7dcc3;"|Coxeter group | A8, [37], order 362880 |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names=
- Bitruncated enneazetton (Acronym: batene) (Jonathan Bowers)Klitizing, (o3x3x3o3o3o3o3o - batene)
= Coordinates =
The Cartesian coordinates of the vertices of the bitruncated 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,0,0,1,2,2). This construction is based on facets of the bitruncated 9-orthoplex.
= Images =
{{8-simplex Coxeter plane graphs|t12|120}}
Tritruncated 8-simplex
class="wikitable" align="right" style="margin-left:10px" width="250"
! style="background:#e7dcc3;" colspan="2"|tritruncated 8-simplex | |
style="background:#e7dcc3;"|Type | uniform 8-polytope |
style="background:#e7dcc3;"|Schläfli symbol | 3t{37} |
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams | {{CDD|node|3|node|3|node_1|3|node_1|3|node|3|node|3|node|3|node}} |
style="background:#e7dcc3;"|7-faces | |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 2016 |
style="background:#e7dcc3;"|Vertices | 504 |
style="background:#e7dcc3;"|Vertex figure | {3}v{3,3,3} |
style="background:#e7dcc3;"|Coxeter group | A8, [37], order 362880 |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names=
- Tritruncated enneazetton (Acronym: tatene) (Jonathan Bowers)Klitizing, (o3o3x3x3o3o3o3o - tatene)
= Coordinates =
The Cartesian coordinates of the vertices of the tritruncated 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,0,1,2,2,2). This construction is based on facets of the tritruncated 9-orthoplex.
= Images =
{{8-simplex Coxeter plane graphs|t23|120}}
Quadritruncated 8-simplex
class="wikitable" align="right" style="margin-left:10px" width="250"
! style="background:#e7dcc3;" colspan="2"|Quadritruncated 8-simplex | |
style="background:#e7dcc3;"|Type | uniform 8-polytope |
style="background:#e7dcc3;"|Schläfli symbol | 4t{37} |
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams | {{CDD|node|3|node|3|node|3|node_1|3|node_1|3|node|3|node|3|node}} or {{CDD|branch_11|3ab|nodes|3ab|nodes|3ab|nodes}} |
style="background:#e7dcc3;"|6-faces | 18 3t{3,3,3,3,3,3} |
style="background:#e7dcc3;"|7-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 2520 |
style="background:#e7dcc3;"|Vertices | 630 |
style="background:#e7dcc3;"|Vertex figure | 80px {3,3}v{3,3} |
style="background:#e7dcc3;"|Coxeter group | A8, 37, order 725760 |
style="background:#e7dcc3;"|Properties | convex, isotopic |
The quadritruncated 8-simplex an isotopic polytope, constructed from 18 tritruncated 7-simplex facets.
= Alternate names=
- Octadecazetton (18-facetted 8-polytope) (Acronym: be) (Jonathan Bowers)Klitizing, (o3o3o3x3x3o3o3o - be)
= Coordinates =
The Cartesian coordinates of the vertices of the quadritruncated 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,1,2,2,2,2). This construction is based on facets of the quadritruncated 9-orthoplex.
= Images =
{{8-simplex2 Coxeter plane graphs|t34|120}}
= Related polytopes=
{{Isotopic uniform simplex polytopes}}
Related polytopes
This polytope is one of 135 uniform 8-polytopes with A8 symmetry.
{{Enneazetton family}}
Notes
{{reflist}}
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{ISBN|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- {{KlitzingPolytopes|polyzetta.htm|8D|uniform polytopes (polyzetta)}} x3x3o3o3o3o3o3o - tene, o3x3x3o3o3o3o3o - batene, o3o3x3x3o3o3o3o - tatene, o3o3o3x3x3o3o3o - be
External links
- [https://web.archive.org/web/20070310205351/http://members.cox.net/hedrondude/topes.htm Polytopes of Various Dimensions]
- [http://tetraspace.alkaline.org/glossary.htm Multi-dimensional Glossary]
{{Polytopes}}