Truncated order-7 square tiling
{{short description|Uniform tiling of the hyperbolic plane}}
{{Uniform hyperbolic tiles db|Uniform hyperbolic tiling stat table|U74_12}}
In geometry, the truncated order-7 square tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t0,1{4,7}.
Related polyhedra and tiling
{{Truncated figure4 table}}
{{Order 7-4 tiling table}}
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, {{isbn|978-1-56881-220-5}} (Chapter 19, The Hyperbolic Archimedean Tessellations)
- {{Cite book|title=The Beauty of Geometry: Twelve Essays|year=1999|publisher=Dover Publications|lccn=99035678|isbn=0-486-40919-8|chapter=Chapter 10: Regular honeycombs in hyperbolic space}}
See also
{{Commonscat|Uniform tiling 7-8-8}}
External links
- {{MathWorld | urlname= HyperbolicTiling | title = Hyperbolic tiling}}
- {{MathWorld | urlname=PoincareHyperbolicDisk | title = Poincaré hyperbolic disk }}
- [http://geometrygames.org/KaleidoTile/index.html KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings]
- [http://www.plunk.org/~hatch/HyperbolicTesselations Hyperbolic Planar Tessellations, Don Hatch]
{{Tessellation}}
{{hyperbolic-geometry-stub}}