Twisted sheaf

In mathematics, a twisted sheaf is a variant of a coherent sheaf. Precisely, it is specified by: an open covering in the étale topology Ui, coherent sheaves Fi over Ui, a Čech 2-cocycle θ for \mathbb{G}_m on the covering Ui as well as the isomorphisms

:g_{ij}: F_j|_{U_{ij}} \overset{\sim}\to F_i|_{U_{ij}}

satisfying

  • g_{ii} = \operatorname{id}_{F_i},
  • g_{ij} = g_{ji}^{-1},
  • g_{ij} \circ g_{jk} \circ g_{ki} = \theta_{ijk} \operatorname{id}_{F_i}.

The notion of twisted sheaves was introduced by Jean Giraud. The above definition due to Căldăraru is down-to-earth but is equivalent to a more sophisticated definition in terms of gerbe; see § 2.1.3 of {{harv|Lieblich|2007}}.

See also

References

  • {{cite journal |s2cid=119117575 |doi=10.1515/CRLL.2002.022 |title=Derived categories of twisted sheaves on elliptic threefolds |year=2002 |last1=Căldăraru |first1=Andrei |journal=Journal für die reine und angewandte Mathematik (Crelle's Journal) |volume=2002 |issue=544 |pages=161–179 |arxiv=math/0012083 }}
  • {{cite journal |doi=10.1215/S0012-7094-07-13812-2|title=Moduli of twisted sheaves |year=2007 |last1=Lieblich |first1=Max |journal=Duke Mathematical Journal |volume=138 |s2cid=14067307 }}

Category:Geometry

{{algebraic-geometry-stub}}