Two-dimensional semiconductor
{{Short description|Type of natural semiconductor with thicknesses on the atomic scale}}
A two-dimensional semiconductor (also known as 2D semiconductor) is a type of natural semiconductor with thicknesses on the atomic scale. Geim and Novoselov et al. initiated the field in 2004 when they reported a new semiconducting material graphene, a flat monolayer of carbon atoms arranged in a 2D honeycomb lattice.{{cite journal|last1=Novoselov|first1=K. S.|title=Electric Field Effect in Atomically Thin Carbon Films|journal=Science|volume=306|issue=5696|year=2004|pages=666–669|issn=0036-8075|doi=10.1126/science.1102896|arxiv = cond-mat/0410550 |bibcode = 2004Sci...306..666N|pmid=15499015|s2cid=5729649 }} A 2D monolayer semiconductor is significant because it exhibits stronger piezoelectric coupling than traditionally employed bulk forms. This coupling could enable applications.{{cite journal|last1=Song|first1=Xiufeng|last2=Hu|first2=Jinlian|last3=Zeng|first3=Haibo|title=Two-dimensional semiconductors: recent progress and future perspectives|journal=Journal of Materials Chemistry C|date=2013|volume=1|issue=17|pages=2952|doi=10.1039/C3TC00710C|url=https://www.researchgate.net/publication/236747849}} One research focus is on designing nanoelectronic components by the use of graphene as electrical conductor, hexagonal boron nitride as electrical insulator, and a transition metal dichalcogenide as semiconductor.{{cite journal|last1=Radisavljevic|first1=B.|last2=Radenovic|first2=A.|last3=Brivio|first3=J.|last4=Giacometti|first4=V.|last5=Kis|first5=A.|year=2011| title=Single-layer MoS2 transistors| journal=Nature Nanotechnology| volume=6| issue=3| pages=147–150|doi=10.1038/nnano.2010.279| pmid=21278752|bibcode=2011NatNa...6..147R|url=http://infoscience.epfl.ch/record/164049}}{{cite journal|last1=Geim|first1=A. K.|last2=Grigorieva|first2=I. V.|title=Van der Waals heterostructures|journal=Nature|volume=499|issue=7459|year=2013|pages=419–425|issn=0028-0836|doi=10.1038/nature12385|pmid=23887427|arxiv=1307.6718|s2cid=205234832 }}
Materials
=Graphene=
{{Main|Graphene}}
Graphene, consisting of single sheets of carbon atoms, has high electron mobility and high thermal conductivity. One issue regarding graphene is its lack of a band gap, which poses a problem in particular with digital electronics because it is unable to switch off field-effect transistors (FETs).
=Hexagonal boron nitride=
Monolayer hexagonal boron nitride (h-BN) is an insulator with a high energy gap (5.97 eV).{{cite journal|last1=Dean|first1=C. R.|last2=Young|first2=A. F.|last3=Meric|first3=I.|last4=Lee|first4=C.|last5=Wang|first5=L.|last6=Sorgenfrei|first6=S.|last7=Watanabe|first7=K.|last8=Taniguchi|first8=T.|last9=Kim|first9=P.|last10=Shepard|first10=K. L.|last11=Hone|first11=J.|title=Boron nitride substrates for high-quality graphene electronics|journal=Nature Nanotechnology|volume=5|issue=10|year=2010|pages=722–726|issn=1748-3387|doi=10.1038/nnano.2010.172|arxiv = 1005.4917 |bibcode = 2010NatNa...5..722D|pmid=20729834|s2cid=1493242 }} However, it can also function as a semiconductor with enhanced conductivity due to its zigzag sharp edges and vacancies. h-BN is often used as substrate and barrier due to its insulating property. h-BN also has a large thermal conductivity.
=Transition-metal dichalcogenides=
{{Main|Transition metal dichalcogenide monolayers}}
Transition-metal dichalcogenide monolayers (TMDs or TMDCs) are a class of two-dimensional materials that have the chemical formula MX2, where M represents transition metals from group IV, V and VI, and X represents a chalcogen such as sulfur, selenium or tellurium.{{cite journal|last1=Wang|first1=Qing Hua|last2=Kalantar-Zadeh|first2=Kourosh|last3=Kis|first3=Andras|last4=Coleman|first4=Jonathan N.|last5=Strano|first5=Michael S.|authorlink5=Michael Strano|title=Electronics and optoelectronics of two-dimensional transition metal dichalcogenides|journal=Nature Nanotechnology|volume=7|issue=11|year=2012|pages=699–712|issn=1748-3387|doi=10.1038/nnano.2012.193|bibcode = 2012NatNa...7..699W|pmid=23132225|s2cid=6261931 |url=http://infoscience.epfl.ch/record/182177}} MoS2, MoSe2, MoTe2, WS2 and WSe2 are TMDCs. TMDCs have layered structure with a plane of metal atoms in between two planes of chalcogen atoms as shown in Figure 1. Each layer is bonded strongly in plane, but weakly in interlayers. Therefore, TMDCs can be easily exfoliated into atomically thin layers through various methods. TMDCs show layer-dependent optical and electrical properties. When exfoliated into monolayers, the band gaps of several TMDCs change from indirect to direct,{{cite journal |last1=Kuc |first1=A. |last2=Zibouche |first2=N. |last3=Heine |first3=T. |title=Influence of quantum confinement on the electronic structure of the transition metal sulfideTS2 |journal=Physical Review B |volume=83 |issue=24 |pages=245213 |year=2011 |issn=1098-0121|doi=10.1103/PhysRevB.83.245213 |arxiv=1104.3670 |bibcode=2011PhRvB..83x5213K|s2cid=119112827 }} which lead to broad applications in nanoelectronics, optoelectronics,{{cite journal|last1=Wilson|first1=J.A.|last2=Yoffe|first2=A.D.|title=The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties|journal=Advances in Physics|volume=18|issue=73|year=1969|pages=193–335|issn=0001-8732|doi=10.1080/00018736900101307|bibcode = 1969AdPhy..18..193W}}{{cite journal|last1=Yoffe|first1=A D|title=Layer Compounds|journal=Annual Review of Materials Science|volume=3|issue=1|year=1973|pages=147–170|issn=0084-6600|doi=10.1146/annurev.ms.03.080173.001051|bibcode = 1973AnRMS...3..147Y}} and quantum computing.
{{cite journal
|title = Charge qubit in van der Waals heterostructures
|author = B. Lucatto
|journal = Physical Review B
|volume = 100
|issue = 12
|pages = 121406
|year = 2019
|doi = 10.1103/PhysRevB.100.121406
|url = https://link.aps.org/doi/10.1103/PhysRevB.100.121406
|display-authors=etal|arxiv = 1904.10785
|bibcode = 2019PhRvB.100l1406L
|s2cid = 129945636
}} While exfoliated TMDC monolayers exhibit promising optoelectronic properties, they are often limited by intrinsic and extrinsic defects,{{Cite journal |last1=Rhodes |first1=Daniel |last2=Chae |first2=Sang Hoon |last3=Ribeiro-Palau |first3=Rebeca |last4=Hone |first4=James |date=2019-05-21 |title=Disorder in van der Waals heterostructures of 2D materials |url=http://dx.doi.org/10.1038/s41563-019-0366-8 |journal=Nature Materials |volume=18 |issue=6 |pages=541–549 |doi=10.1038/s41563-019-0366-8 |pmid=31114069 |bibcode=2019NatMa..18..541R |issn=1476-1122}} such as sulfur vacancies and grain boundaries, which can negatively affect their performance. To address these issues, various chemical passivation techniques, including the use of superacids and thiol molecules,{{Cite journal |last1=Li |first1=Zhaojun |last2=Bretscher |first2=Hope |last3=Zhang |first3=Yunwei |last4=Delport |first4=Géraud |last5=Xiao |first5=James |last6=Lee |first6=Alpha |last7=Stranks |first7=Samuel D. |last8=Rao |first8=Akshay |date=2021-10-18 |title=Mechanistic insight into the chemical treatments of monolayer transition metal disulfides for photoluminescence enhancement |url=http://dx.doi.org/10.1038/s41467-021-26340-6 |journal=Nature Communications |volume=12 |issue=1 |page=6044 |doi=10.1038/s41467-021-26340-6 |pmid=34663820 |issn=2041-1723|pmc=8523741 |arxiv=2009.11123 |bibcode=2021NatCo..12.6044L }} have been developed to enhance their photoluminescence and charge transport properties. Additionally, phase{{Cite journal |last1=Huang |first1=H. H. |last2=Fan |first2=Xiaofeng |last3=Singh |first3=David J. |last4=Zheng |first4=W. T. |date=2020 |title=Recent progress of TMD nanomaterials: phase transitions and applications |url=http://dx.doi.org/10.1039/c9nr08313h |journal=Nanoscale |volume=12 |issue=3 |pages=1247–1268 |doi=10.1039/c9nr08313h |pmid=31912836 |issn=2040-3364|url-access=subscription }} and strain engineering{{Cite journal |last1=Liu |first1=Zheng |last2=Amani |first2=Matin |last3=Najmaei |first3=Sina |last4=Xu |first4=Quan |last5=Zou |first5=Xiaolong |last6=Zhou |first6=Wu |last7=Yu |first7=Ting |last8=Qiu |first8=Caiyu |last9=Birdwell |first9=A. Glen |last10=Crowne |first10=Frank J. |last11=Vajtai |first11=Robert |last12=Yakobson |first12=Boris I. |last13=Xia |first13=Zhenhai |last14=Dubey |first14=Madan |last15=Ajayan |first15=Pulickel M. |date=2014-11-18 |title=Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition |url=http://dx.doi.org/10.1038/ncomms6246 |journal=Nature Communications |volume=5 |issue=1 |page=5246 |doi=10.1038/ncomms6246 |pmid=25404060 |issn=2041-1723}} have emerged as powerful strategies to further optimize the electronic characteristics of TMDCs, making them more suitable for advanced applications in nanoelectronics and quantum computing.
= III-VI chalcogenides =
Another class of 2D semiconductors are III-VI chalcogenides. These materials have the chemical formula MX, where M is a metal from group 13 (Ga, In) and X is a chalcogen atom (S, Se, Te). Typical members of this group are InSe and GaSe, both of which have shown high electronic mobilities and band gaps suitable for a wide range of electronic applications.{{Cite journal |last1=Arora |first1=Himani |last2=Jung |first2=Younghun |last3=Venanzi |first3=Tommaso |last4=Watanabe |first4=Kenji |last5=Taniguchi |first5=Takashi |last6=Hübner |first6=René |last7=Schneider |first7=Harald |last8=Helm |first8=Manfred |last9=Hone |first9=James C. |last10=Erbe |first10=Artur |date=2019-11-20 |title=Effective Hexagonal Boron Nitride Passivation of Few-Layered InSe and GaSe to Enhance Their Electronic and Optical Properties |url=https://pubs.acs.org/doi/10.1021/acsami.9b13442 |journal=ACS Applied Materials & Interfaces |language=en |volume=11 |issue=46 |pages=43480–43487 |doi=10.1021/acsami.9b13442 |pmid=31651146 |hdl=11573/1555190 |s2cid=204884014 |issn=1944-8244|hdl-access=free }}{{Cite journal |last1=Arora |first1=Himani |last2=Erbe |first2=Artur |date=2021 |title=Recent progress in contact, mobility, and encapsulation engineering of InSe and GaSe |journal=InfoMat |language=en |volume=3 |issue=6 |pages=662–693 |doi=10.1002/inf2.12160 |s2cid=228902032 |issn=2567-3165|doi-access=free }}
Synthesis
2D semiconductor materials are often synthesized using a chemical vapor deposition (CVD) method. Because CVD can provide large-area, high-quality, and well-controlled layered growth of 2D semiconductor materials, it also allows synthesis of two-dimensional heterojunctions.{{cite journal|last1=Duan|first1=Xidong|last2=Wang|first2=Chen|last3=Shaw|first3=Jonathan C.|last4=Cheng|first4=Rui|last5=Chen|first5=Yu|last6=Li|first6=Honglai|last7=Wu|first7=Xueping|last8=Tang|first8=Ying|last9=Zhang|first9=Qinling|last10=Pan|first10=Anlian|last11=Jiang|first11=Jianhui|last12=Yu|first12=Ruqing|last13=Huang|first13=Yu|last14=Duan|first14=Xiangfeng|title=Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions|journal=Nature Nanotechnology|volume=9|issue=12|year=2014|pages=1024–1030|issn=1748-3387|doi=10.1038/nnano.2014.222 |pmid=25262331 |bibcode=2014NatNa...9.1024D|pmc=12049235}} When building devices by stacking different 2D materials, mechanical exfoliation followed by transferring is often used. Other possible synthesis methods include electrochemical deposition,{{Cite journal |last1=Noori |first1=Yasir J. |last2=Thomas |first2=Shibin |last3=Ramadan |first3=Sami |last4=Smith |first4=Danielle E. |last5=Greenacre |first5=Vicki K. |last6=Abdelazim |first6=Nema |last7=Han |first7=Yisong |last8=Beanland |first8=Richard |last9=Hector |first9=Andrew L. |last10=Klein |first10=Norbert |last11=Reid |first11=Gillian |last12=Bartlett |first12=Philip N. |last13=Kees de Groot |first13=C. H. |date=2020-11-04 |title=Large-Area Electrodeposition of Few-Layer MoS 2 on Graphene for 2D Material Heterostructures |url=https://pubs.acs.org/doi/10.1021/acsami.0c14777 |journal=ACS Applied Materials & Interfaces |language=en |volume=12 |issue=44 |pages=49786–49794 |doi=10.1021/acsami.0c14777 |pmid=33079533 |s2cid=224828493 |issn=1944-8244|arxiv=2005.08616 }}{{Cite journal |last1=Noori |first1=Y J |last2=Thomas |first2=S |last3=Ramadan |first3=S |last4=Greenacre |first4=V K |last5=Abdelazim |first5=N M |last6=Han |first6=Y |last7=Zhang |first7=J |last8=Beanland |first8=R |last9=Hector |first9=A L |last10=Klein |first10=N |last11=Reid |first11=G |last12=Bartlett |first12=P N |last13=de Groot |first13=C H |date=2022-01-01 |title=Electrodeposited WS 2 monolayers on patterned graphene |url=https://iopscience.iop.org/article/10.1088/2053-1583/ac3dd6 |journal=2D Materials |volume=9 |issue=1 |pages=015025 |doi=10.1088/2053-1583/ac3dd6 |arxiv=2109.00083 |bibcode=2022TDM.....9a5025N |s2cid=244693600 |issn=2053-1583}} chemical exfoliation, hydrothermal synthesis, and thermal decomposition. In 2008 cadmium selenide CdSe quasi 2D platelets were first synthesized by colloidal method with thicknesses of several atomic layers and lateral sizes up to dozens of nanometers.{{Cite journal |last1=Ithurria |first1=Sandrine |last2=Dubertret |first2=Benoit |date=2008-12-10 |title=Quasi 2D Colloidal CdSe Platelets with Thicknesses Controlled at the Atomic Level |url=https://doi.org/10.1021/ja807724e |journal=Journal of the American Chemical Society |volume=130 |issue=49 |pages=16504–16505 |doi=10.1021/ja807724e |pmid=19554725 |bibcode=2008JAChS.13016504I |issn=0002-7863|url-access=subscription }} Modification of the procedure allowed to obtain other nanoparticles with different compositions (like CdTe,{{Cite journal |last1=Pedetti |first1=Silvia |last2=Nadal |first2=Brice |last3=Lhuillier |first3=Emmanuel |last4=Mahler |first4=Benoit |last5=Bouet |first5=Cécile |last6=Abécassis |first6=Benjamin |last7=Xu |first7=Xiangzhen |last8=Dubertret |first8=Benoit |date=2013-06-25 |title=Optimized Synthesis of CdTe Nanoplatelets and Photoresponse of CdTe Nanoplatelets Films |url=https://doi.org/10.1021/cm4006844 |journal=Chemistry of Materials |volume=25 |issue=12 |pages=2455–2462 |doi=10.1021/cm4006844 |s2cid=101411815 |issn=0897-4756}} HgSe,{{Cite journal |last1=Izquierdo |first1=Eva |last2=Dufour |first2=Marion |last3=Chu |first3=Audrey |last4=Livache |first4=Clément |last5=Martinez |first5=Bertille |last6=Amelot |first6=Dylan |last7=Patriarche |first7=Gilles |last8=Lequeux |first8=Nicolas |last9=Lhuillier |first9=Emmanuel |last10=Ithurria |first10=Sandrine |date=2018-06-26 |title=Coupled HgSe Colloidal Quantum Wells through a Tunable Barrier: A Strategy To Uncouple Optical and Transport Band Gap |url=https://doi.org/10.1021/acs.chemmater.8b01028 |journal=Chemistry of Materials |volume=30 |issue=12 |pages=4065–4072 |doi=10.1021/acs.chemmater.8b01028 |s2cid=103490948 |issn=0897-4756}} CdSexS1−x alloys,{{Cite journal |last1=Fan |first1=Fengjia |last2=Kanjanaboos |first2=Pongsakorn |last3=Saravanapavanantham |first3=Mayuran |last4=Beauregard |first4=Eric |last5=Ingram |first5=Grayson |last6=Yassitepe |first6=Emre |last7=Adachi |first7=Michael M. |last8=Voznyy |first8=Oleksandr |last9=Johnston |first9=Andrew K. |last10=Walters |first10=Grant |last11=Kim |first11=Gi-Hwan |date=2015-07-08 |title=Colloidal CdSe1–xSx Nanoplatelets with Narrow and Continuously-Tunable Electroluminescence |url=https://doi.org/10.1021/acs.nanolett.5b01233 |journal=Nano Letters |volume=15 |issue=7 |pages=4611–4615 |doi=10.1021/acs.nanolett.5b01233 |pmid=26031416 |bibcode=2015NanoL..15.4611F |issn=1530-6984|url-access=subscription }} core/shell{{Cite journal |last1=Mahler |first1=Benoit |last2=Nadal |first2=Brice |last3=Bouet |first3=Cecile |last4=Patriarche |first4=Gilles |last5=Dubertret |first5=Benoit |date=2012-11-14 |title=Core/Shell Colloidal Semiconductor Nanoplatelets |url=https://doi.org/10.1021/ja307944d |journal=Journal of the American Chemical Society |volume=134 |issue=45 |pages=18591–18598 |doi=10.1021/ja307944d |pmid=23057684 |bibcode=2012JAChS.13418591M |issn=0002-7863|url-access=subscription }} and core/crown {{Cite journal |last1=Kelestemur |first1=Yusuf |last2=Olutas |first2=Murat |last3=Delikanli |first3=Savas |last4=Guzelturk |first4=Burak |last5=Akgul |first5=Mehmet Zafer |last6=Demir |first6=Hilmi Volkan |date=2015-01-29 |title=Type-II Colloidal Quantum Wells: CdSe/CdTe Core/Crown Heteronanoplatelets |url=https://doi.org/10.1021/jp510466k |journal=The Journal of Physical Chemistry C |volume=119 |issue=4 |pages=2177–2185 |doi=10.1021/jp510466k |hdl=11693/23136 |issn=1932-7447|hdl-access=free |url-access=subscription }} heterostructures) and shapes (as scrolls,{{Cite journal |last1=Vasiliev |first1=Roman B. |last2=Lazareva |first2=Elizabeth P. |last3=Karlova |first3=Daria A. |last4=Garshev |first4=Alexey V. |last5=Yao |first5=Yuanzhao |last6=Kuroda |first6=Takashi |last7=Gaskov |first7=Alexander M. |last8=Sakoda |first8=Kazuaki |date=2018-03-13 |title=Spontaneous Folding of CdTe Nanosheets Induced by Ligand Exchange |url=https://doi.org/10.1021/acs.chemmater.7b05324 |journal=Chemistry of Materials |volume=30 |issue=5 |pages=1710–1717 |doi=10.1021/acs.chemmater.7b05324 |issn=0897-4756|url-access=subscription }} nanoribbons,{{Cite journal |last1=Deng |first1=Zhengtao |last2=Cao |first2=Di |last3=He |first3=Jin |last4=Lin |first4=Su |last5=Lindsay |first5=Stuart M. |last6=Liu |first6=Yan |date=2012-07-24 |title=Solution Synthesis of Ultrathin Single-Crystalline SnS Nanoribbons for Photodetectors via Phase Transition and Surface Processing |url=https://doi.org/10.1021/nn302504p |journal=ACS Nano |volume=6 |issue=7 |pages=6197–6207 |doi=10.1021/nn302504p |pmid=22738287 |issn=1936-0851|url-access=subscription }} etc.).
Mechanical behavior
2D semiconductor materials unique crystal structures often yield unique mechanical properties, especially in the monolayer limit, such as high stiffness and strength in the 2D atomic plane, but low flexural rigidity.Akinwande, D.; Brennan, C. J.; Bunch, J. S.; Egberts, P.; Felts, J. R.; Gao, H.; Huang, R.; Kim, J.-S.; Li, T.; Li, Y.; Liechti, K. M.; Lu, N.; Park, H. S.; Reed, E. J.; Wang, P.; Yakobson, B. I.; Zhang, T.; Zhang, Y.-W.; Zhou, Y.; Zhu, Y. A Review on Mechanics and Mechanical Properties of 2D Materials—Graphene and Beyond. Extreme Mech. Lett. 2017, 13, 42–77.
= Graphene =
With a Youngs modulus of almost 1 TPa,Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321 (5887), 385–388.
= Atomically thin boron nitride =
Monolayer boron nitride has fracture strength and Youngs modulus of 70.5 GPa and 0.865 TPa, respectively. Boron nitride also maintains its high Youngs modulus and fracture strengths with increasing thickness.Falin, A.; Cai, Q.; Santos, E. J. G.; Scullion, D.; Qian, D.; Zhang, R.; Yang, Z.; Huang, S.; Watanabe, K.; Taniguchi, T.; Barnett, M. R.; Chen, Y.; Ruoff, R. S.; Li, L. H. Mechanical Properties of Atomically Thin Boron Nitride and the Role of Interlayer Interactions. Nat. Commun. 2017, 8, 15815.
= Transition metal dichalcogenides =
2D transition metal dichalcogenides are often used in applications such as flexible and stretchable electronics, where an understanding of their mechanical properties and the operational impact of mechanical changes to the materials is paramount for device performance. Under strain TMDs change their electronic bandgap structure of both the direct gap monolayer and the indirect gap few layer cases indicating applied strain as a tunable parameter.Conley, H. J.; Wang, B.; Ziegler, J. I.; Haglund Jr., R. F.; Pantelides, S. T.; Bolotin, K. I. Bandgap Engineering of Strained Monolayer and Bilayer MoS2. Nano Lett. 2013, 13 (8), 3626–3630.
Proposed applications
File:2D device.PNG device with top-gated Schottky contact and TMDC layers with different doping levels.{{cite journal|last1=Ong|first1=Zhun-Yong|last2=Bae|first2=Myung-Ho|title=Energy dissipation in van der Waals 2D devices|journal=2D Materials|date=2019|volume=6|issue=3|pages= 032005|doi=10.1088/2053-1583/ab20ea|arxiv=1904.09752|bibcode=2019TDM.....6c2005O |s2cid=128345575 }}]]
Some applications include electronic devices,{{Cite web|url=http://2d.stanford.edu/2D_Trends|title=Stanford 2D Device Trends|date=|website=|archive-url=|archive-date=|access-date=|last1=McClellan |first1=Connor }} photonic and energy harvesting devices, and flexible and transparent substrates. Other applications include on quantum computing qubit devices solar cells,{{cite journal|last1=Shanmugam|first1=Mariyappan|last2=Jacobs-Gedrim|first2=Robin|last3=Song|first3=Eui Sang|last4=Yu|first4=Bin|title=Two-dimensional layered semiconductor/graphene heterostructures for solar photovoltaic applications|journal=Nanoscale|volume=6|issue=21|year=2014|pages=12682–12689|issn=2040-3364|doi=10.1039/C4NR03334E|pmid=25210837|bibcode = 2014Nanos...612682S}} and flexible electronics.
=Quantum computing=
Theoretical work has predicted the control of the band edges hybridization on some van der Waals heterostructures via electric fields and proposed its usage in quantum bit devices, considering the ZrSe2/SnSe2 heterobilayer as an example. Further experimental work has confirmed these predictions for the case of the MoS2/WS2 heterobilayer.{{cite journal|last1=Kiemle|first1=Jonas|year=2020|title=Control of the orbital character of indirect excitons in MoS2/WS2 heterobilayers| journal=Phys. Rev. B| volume=101| issue=12| display-authors=etal| pages=121404|doi=10.1103/PhysRevB.101.121404|url=https://link.aps.org/doi/10.1103/PhysRevB.101.121404|arxiv=1912.02479|bibcode=2020PhRvB.101l1404K |s2cid=208637170 }}
=Magnetic NEMS=
2D layered magnetic materials are attractive building blocks for nanoelectromechanical systems (NEMS): while they share high stiffness and strength and low mass with other 2D materials, they are magnetically active. Among the large class of newly emerged 2D layered magnetic materials, of particular interest is few-layer CrI3, whose magnetic ground state consists of antiferromagnetically coupled ferromagnetic (FM) monolayers with out-of-plane easy axis. The interlayer exchange interaction is relatively weak, a magnetic field on the order of 0.5 T in the out-of-plane (𝒛) direction can induce spin-flip transition in bilayer CrI3. Remarkable phenomena and device concepts based on detecting and controlling the interlayer magnetic state have been recently demonstrated, including spin-filter giant magnetoresistance, magnetic switching by electric field or electrostatic doping, and spin transistors. The coupling between the magnetic and mechanical properties in atomically thin materials, the basis for 2D magnetic NEMS, however, remains elusive although NEMS made of thicker magnetic materials or coated with FM metals have been studied.