Uniform tiling symmetry mutations

class="wikitable floatright" style="font-size:88%; margin-left:1em"

|+ Example *n32 symmetry mutations

colspan=3|Spherical tilings (n = 3..5)
align=center

| 120px
*332

| 120px
*432

| 120px
*532

colspan=3|Euclidean plane tiling (n = 6)
align=center

|colspan=3|240px
*632

colspan=3|Hyperbolic plane tilings (n = 7...∞)
align=center

| 120px
*732

| 120px
*832

| 120px
... *∞32

In geometry, a symmetry mutation is a mapping of fundamental domains between two symmetry groups.[http://www.google.com/search?q=Two-Dimensional+Symmetry+Mutation Two Dimensional symmetry Mutations by Daniel Huson] They are compactly expressed in orbifold notation. These mutations can occur from spherical tilings to Euclidean tilings to hyperbolic tilings. Hyperbolic tilings can also be divided between compact, paracompact and divergent cases.

The uniform tilings are the simplest application of these mutations, although more complex patterns can be expressed within a fundamental domain.

This article expressed progressive sequences of uniform tilings within symmetry families.

Mutations of orbifolds

Orbifolds with the same structure can be mutated between different symmetry classes, including across curvature domains from spherical, to Euclidean to hyperbolic. This table shows mutation classes. This table is not complete for possible hyperbolic orbifolds.

class=wikitable

!Orbifold

!Spherical

!Euclidean

!Hyperbolic

o

| -

|o

| -

pp

|22, 33 ...

|∞∞

| -

*pp

|*22, *33 ...

|*∞∞

| -

p*

|2*, 3* ...

|∞*

| -

|2×, 3× ...

|∞×

|

**

| -

|**

| -

| -

|*×

| -

××

| -

| ××

| -

ppp

|222

|333

|444 ...

pp*

| -

|22*

|33* ...

pp×

| -

|22×

|33×, 44× ...

pqq

|222, 322 ... , 233

|244

|255 ..., 433 ...

pqr

|234, 235

|236

|237 ..., 245 ...

pq*

| -

| -

|23*, 24* ...

pq×

| -

| -

|23×, 24× ...

p*q

|2*2, 2*3 ...

|3*3, 4*2

|5*2 5*3 ..., 4*3, 4*4 ..., 3*4, 3*5 ...

*p*

| -

| -

| *2* ...

*p×

| -

| -

| *2× ...

pppp

| -

| 2222

| 3333 ...

pppq

| -

| -

| 2223...

ppqq

| -

| -

|2233

pp*p

| -

| -

|22*2 ...

p*qr

| -

|2*22

|3*22 ..., 2*32 ...

*ppp

|*222

|*333

|*444 ...

*pqq

|*p22, *233

|*244

|*255 ..., *344...

*pqr

|*234, *235

|*236

|*237..., *245..., *345 ...

p*ppp

| -

| -

|2*222

*pqrs

| -

|*2222

|*2223...

*ppppp

| -

| -

|*22222 ...

...

*''n''22 symmetry

= Regular tilings=

{{Regular hosohedral tilings}}

{{Regular_dihedral_tilings}}

= Prism tilings=

class="wikitable"

|+ *n22 symmetry mutations of uniform prisms: n.4.4

!Space

!colspan=10|Spherical

!Euclidean

Tiling

|40px

|40px

|40px

|40px

|40px

|40px

|

|40px

|

|

|80px

Config.

!3.4.4

!4.4.4

!5.4.4

!6.4.4

!7.4.4

!8.4.4

!9.4.4

!10.4.4

!11.4.4

!12.4.4

!...∞.4.4

= Antiprism tilings=

{{Antiprism tilings}}

*''n''32 symmetry

= Regular tilings=

{{Triangular regular tiling}}

{{Order-3 tiling table}}

= Truncated tilings=

{{Truncated figure1 table}}

{{Truncated figure2 table}}

= Quasiregular tilings =

{{Quasiregular3 table}}

{{Dual quasiregular3 table}}

= Expanded tilings=

{{Expanded table}}

{{Dual expanded table}}

= Omnitruncated tilings =

{{Omnitruncated table}}

= Snub tilings =

{{Snub table}}

*''n''42 symmetry

= Regular tilings=

{{Square regular tiling table}}

{{Order-4_regular_tilings}}

= Quasiregular tilings =

{{Quasiregular4 table}}

{{Dual quasiregular4 table}}

= Truncated tilings=

{{Truncated figure3 table}}

{{Truncated figure4 table}}

= Expanded tilings=

{{Expanded4 table}}

= Omnitruncated tilings =

{{Omnitruncated4 table}}

= Snub tilings =

{{Snub4 table}}

*''n''52 symmetry

= Regular tilings=

{{Pentagonal regular tilings}}

*''n''62 symmetry

= Regular tilings=

{{Hexagonal regular tilings}}

*''n''82 symmetry

= Regular tilings=

{{Octagonal regular tilings}}

References

{{reflist}}

Sources

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, {{ISBN|978-1-56881-220-5}} [https://web.archive.org/web/20100919143320/https://akpeters.com/product.asp?ProdCode=2205]
  • [http://www.crystallography.fr/mathcryst/pdf/Leuven_Hyde_slides.pdf From hyperbolic 2-space to Euclidean 3-space: Tilings and patterns via topology] Stephen Hyde

Category:Polyhedra

Category:Euclidean tilings

Category:Hyperbolic tilings