User:Anarchyte/sandboxTRAPPIST
{{Short description|Ultra-cool red dwarf star in the constellation Aquarius}}
{{EngvarB|date=June 2022}}
{{Use dmy dates|date=June 2023}}
{{Sky|23|06|29.383|-|05|02|28.59}}
{{Starbox begin
| name = TRAPPIST-1
}}
{{Starbox image
| image = File:The ultracool dwarf star TRAPPIST-1 in the constellation of Aquarius.tif.]]
| caption = TRAPPIST-1 is within the red circle in the constellation Aquarius.
| credit =
}}
{{Starbox observe
| epoch = J2000
| constell = Aquarius
| ra = {{RA|23|06|29.368}}{{sfn|Brown|2021|loc=Gaia EDR3 record for this source at VizieR}}
| dec = {{DEC|−05|02|29.04}}{{sfn|Brown|2021|loc=Gaia EDR3 record for this source at VizieR}}
| appmag_v = {{val|18.798|0.082}}{{sfn|Costa|Mendez|Jao|Henry|2006|p=1240}}
}}
|-
! style="background-color: #FFFFC0; text-align: center;" colspan="2"| {{#if:||Characteristics}}
|-
{{#if:|
! style="text-align:center" colspan="2" {{!}} {{{component}}}
}}
|-
{{#if:|
! style="text-align:center" colspan="2" {{!}} {{{component1}}}
}}
|- style="vertical-align:top"
{{#if:Main sequence|
! style="text-align:left" {{!}} Evolutionary stage
{{!}} Main sequence
}}
|- style="vertical-align:top"
{{#if:M8V{{sfn|Costa|Mendez|Jao|Henry|2006|p=1234}}|
! style="text-align:left" {{!}} Spectral type
{{!}} M8V{{sfn|Costa|Mendez|Jao|Henry|2006|p=1234}}
}}
|- style="vertical-align:top"
{{#if:|
! style="text-align:left" {{!}} Apparent magnitude ()
{{!}} {{{appmag_1}}}
}}
|- style="vertical-align:top"
{{#if:R|
! style="text-align:left" {{!}} Apparent magnitude (R)
{{!}} {{val|16.466|0.065}}{{sfn|Costa|Mendez|Jao|Henry|2006|p=1240}}
}}
|- style="vertical-align:top"
{{#if:I|
! style="text-align:left" {{!}} Apparent magnitude (I)
{{!}} {{val|14.024|0.115}}{{sfn|Costa|Mendez|Jao|Henry|2006|p=1240}}
}}
|- style="vertical-align:top"
{{#if:J|
! style="text-align:left" {{!}} Apparent magnitude (J)
{{!}} {{val|11.354|0.022}}{{sfn|Cutri|Skrutskie|Van Dyk|Beichman|2003|p=II/246}}
}}
|- style="vertical-align:top"
{{#if:H|
! style="text-align:left" {{!}} Apparent magnitude (H)
{{!}} {{val|10.718|0.021}}{{sfn|Cutri|Skrutskie|Van Dyk|Beichman|2003|p=II/246}}
}}
|- style="vertical-align:top"
{{#if:K|
! style="text-align:left" {{!}} Apparent magnitude (K)
{{!}} {{val|10.296|0.023}}{{sfn|Cutri|Skrutskie|Van Dyk|Beichman|2003|p=II/246}}
}}
|- style="vertical-align:top"
{{#if:|
! style="text-align:left" {{!}} Apparent magnitude ()
{{!}} {{{appmag_7}}}
}}
|- style="vertical-align:top"
{{#if:|
! style="text-align:left" {{!}} Apparent magnitude ()
{{!}} {{{appmag_8}}}
}}
|- style="vertical-align:top"
{{#if:|
! style="text-align:left" {{!}} U−B {{engvar |defaultWord=color index |defaultLang=en-US |en-UK=colour index |engvar= }}
{{!}} {{{u-b}}}
}}
|- style="vertical-align:top"
{{#if:|
! style="text-align:left" {{!}} B−V {{engvar |defaultWord=color index |defaultLang=en-US |en-UK=colour index |engvar= }}
{{!}} {{{b-v}}}
}}
|- style="vertical-align:top"
{{#if:2.332|
! style="text-align:left" {{!}} V−R {{engvar |defaultWord=color index |defaultLang=en-US |en-UK=colour index |engvar= }}
{{!}} 2.332
}}
|- style="vertical-align:top"
{{#if:2.442|
! style="text-align:left" {{!}} R−I {{engvar |defaultWord=color index |defaultLang=en-US |en-UK=colour index |engvar= }}
{{!}} 2.442
}}
|- style="vertical-align:top"
{{#if:0.636|
! style="text-align:left" {{!}} J−H {{engvar |defaultWord=color index |defaultLang=en-US |en-UK=colour index |engvar= }}
{{!}} 0.636
}}
|- style="vertical-align:top"
{{#if:1.058|
! style="text-align:left" {{!}} J−K {{engvar |defaultWord=color index |defaultLang=en-US |en-UK=colour index |engvar= }}
{{!}} 1.058
}}
|- style="vertical-align:top"
{{#if:|
! style="text-align:left" {{!}} Variable type
{{!}}
}}
|- style="vertical-align:top"
{{#if:|
! style="text-align:center" colspan="2" {{!}} {{{component2}}}
}}
|- style="vertical-align:top"
{{#if:|
! style="text-align:left" {{!}} Evolutionary stage
{{!}} {{{type2}}}
}}
|- style="vertical-align:top"
{{#if:|
! style="text-align:left" {{!}} Spectral type
{{!}} {{{class2}}}
}}
|- style="vertical-align:top"
{{#if:|
! style="text-align:left" {{!}} Apparent magnitude ()
{{!}} {{{appmag_1_2}}}
}}
|- style="vertical-align:top"
{{#if:|
! style="text-align:left" {{!}} Apparent magnitude ()
{{!}} {{{appmag_2_2}}}
}}
|- style="vertical-align:top"
{{#if:|
! style="text-align:left" {{!}} Apparent magnitude ()
{{!}} {{{appmag_3_2}}}
}}
|- style="vertical-align:top"
{{#if:|
! style="text-align:left" {{!}} Apparent magnitude ()
{{!}} {{{appmag_4_2}}}
}}
|- style="vertical-align:top"
{{#if:|
! style="text-align:left" {{!}} Apparent magnitude ()
{{!}} {{{appmag_5_2}}}
}}
|- style="vertical-align:top"
{{#if:|
! style="text-align:left" {{!}} Apparent magnitude ()
{{!}} {{{appmag_6_2}}}
}}
|- style="vertical-align:top"
{{#if:|
! style="text-align:left" {{!}} Apparent magnitude ()
{{!}} {{{appmag_7_2}}}
}}
|- style="vertical-align:top"
{{#if:|
! style="text-align:left" {{!}} Apparent magnitude ()
{{!}} {{{appmag_8_2}}}
}}
|- style="vertical-align:top"
{{#if:|
! style="text-align:left" {{!}} U−B {{engvar |defaultWord=color index |defaultLang=en-US |en-UK=colour index |engvar= }}
{{!}} {{{u-b2}}}
}}
|- style="vertical-align:top"
{{#if:|
! style="text-align:left" {{!}} B−V {{engvar |defaultWord=color index |defaultLang=en-US |en-UK=colour index |engvar= }}
{{!}} {{{b-v2}}}
}}
|- style="vertical-align:top"
{{#if:|
! style="text-align:left" {{!}} V−R {{engvar |defaultWord=color index |defaultLang=en-US |en-UK=colour index |engvar= }}
{{!}} {{{v-r2}}}
}}
|- style="vertical-align:top"
{{#if:|
! style="text-align:left" {{!}} R−I {{engvar |defaultWord=color index |defaultLang=en-US |en-UK=colour index |engvar= }}
{{!}} {{{r-i2}}}
}}
|- style="vertical-align:top"
{{#if:|
! style="text-align:left" {{!}} J−H {{engvar |defaultWord=color index |defaultLang=en-US |en-UK=colour index |engvar= }}
{{!}} {{{j-h2}}}
}}
|- style="vertical-align:top"
{{#if:|
! style="text-align:left" {{!}} J−K {{engvar |defaultWord=color index |defaultLang=en-US |en-UK=colour index |engvar= }}
{{!}} {{{j-k2}}}
}}
|- style="vertical-align:top"
{{#if:|
! style="text-align:left" {{!}} Variable type
{{!}} {{{variable2}}}
}}
{{Starbox astrometry
| prop_mo_ra = {{val|930.788}}{{sfn|Brown|2021|loc=Gaia EDR3 record for this source at VizieR}}
| prop_mo_dec = {{val|-479.038}}{{sfn|Brown|2021|loc=Gaia EDR3 record for this source at VizieR}}
| parallax = 80.2123
| p_error = 0.0716
| parallax_footnote = {{sfn|Brown|2021|loc=Gaia EDR3 record for this source at VizieR}}
}}
{{Starbox detail
| mass = 0.0898{{±|0.0023}}{{sfn|Agol|Dorn|Grimm|Turbet|2021|p=1}}
| radius = 0.1192{{±|0.0013}}{{sfn|Agol|Dorn|Grimm|Turbet|2021|p=1}}
| luminosity_bolometric = 0.000553{{±|0.000018}}{{sfn|Agol|Dorn|Grimm|Turbet|2021|p=1}}
| gravity = {{Val|5.2396|0.0056|0.0073}}{{efn|A {{nowrap|log(g)}} of 2.992 for the Earth indicates that TRAPPIST-1 has a surface gravity approximately 177 times stronger than Earth's.}}{{sfn|Agol|Dorn|Grimm|Turbet|2021|p=1}}
| temperature = {{val|2566|26|fmt=commas}}{{sfn|Agol|Dorn|Grimm|Turbet|2021|p=1}}
| metal_fe = {{val|0.04|0.08}}{{sfn|Delrez|Gillon|Triaud|Demory|2018|pp=3577–3597}}
| rotation = {{val|3.295|0.003|u=days}}{{sfn|Vida|Kővári|Pál|Oláh|2017|p=7}}
| rotational_velocity = 6{{sfn|Barnes|Jenkins|Jones|Jeffers|2014|pp=3094–3113}}
| age_gyr = {{val|7.6|2.2}}{{sfn|Burgasser|Mamajek|2017}}
}}
{{Starbox catalog
| names ={{abbr|2MUDC|2MASS UltraCool Dwarves catalog}} 12171,{{sfn|Martínez-Rodríguez|Caballero|Cifuentes|Piro|2019|p=3}} 2MASS J23062928–0502285, EPIC 246199087,{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=2}} K2-112,{{sfn|Meadows|Schmidt|2020|p=727}} SPECULOOS-1, an internal name of the star used by the SPECULOOS project, as this star was its first discovery,{{sfn|Delrez|Murray|Pozuelos|Narita|2022|p=2}} and TRAPPIST-1a.{{sfn|Harbach|Moschou|Garraffo|Drake|2021|p=3}}
}}
{{Starbox reference
| Simbad = 2MASS+J23062928-0502285
| NSTED = TRAPPIST-1
| EPE = TRAPPIST-1
}}
{{Starbox end}}
TRAPPIST-1 is a cold dwarf star{{efn|A red dwarf is a very small and cold star. They are the most common type of star in the Milky Way.{{sfn|Gargaud|Amils|Quintanilla|Cleaves|2011|loc=Red Dwarf}}}} noted for its seven known exoplanets. It lies in the constellation Aquarius about {{val|40.66}} light-years away from Earth, with a surface temperature of about {{convert|2566|K|C F|lk=on|abbr=off|round=10}}. Its radius is slightly larger than Jupiter and it has a mass of about 9% of the Sun. It is estimated to be 7.6 billion years old, making it older than the Solar System. The discovery of the star was first published in 2000.
Observations in 2016 from the Transiting Planets and Planetesimals Small Telescope (TRAPPIST) at La Silla Observatory in Chile and numerous other telescopes led to the discovery of two terrestrial planets in orbit around TRAPPIST-1. In 2017, further analysis of the original observations identified five more planets. It takes the planets between about 1.5 and 19 days to orbit around the star on circular orbits. The planets are likely tidally locked to TRAPPIST-1, such that one side of each planet always faces the star, leading to permanent day on one side and permanent night on the other. Their masses are comparable to that of Earth and they all lie in the same plane; from Earth they seem to move past the disk of the star.
As many as four of the planets – designated d, e, f and g – orbit at distances where temperatures are suitable for the existence of liquid water, and are thus potentially hospitable to life. There is no evidence of an atmosphere on any of the planets and it is unclear whether radiation emissions from TRAPPIST-1 would allow for one. The planets have low densities; they may consist of large amounts of volatile materials. Due to the possibility of several planets being habitable, the system has drawn interest from researchers and has appeared in popular culture.
Description
File:The Sun and TRAPPIST-1.jpg (left) next to TRAPPIST-1 (right). TRAPPIST-1 is darker, redder, and smaller than the Sun.|alt=see caption]]
TRAPPIST-1 is in the constellation Aquarius,{{sfn|Angosto|Zaragoza|Melón|2017|p=85}} five degrees south of the celestial equator.{{efn|The celestial equator is the equator's projection into the sky.{{sfn|Weisstein|2007|loc=Celestial Equator}}}}{{sfn|Brown|Vallenari|Prusti|de Bruijne|2021}}{{sfn|Barstow|Irwin|2016|p=93}} It is a very close star{{sfn|Howell|Everett|Horch|Winters|2016|p=1}} located {{val|40.66|0.04}} light-years from Earth,{{efn|Based on parallax measurements;{{sfn|Brown|Vallenari|Prusti|de Bruijne|2021}} the parallax is the position of a celestial object with respect to other celestial objects for a given position of Earth. It can be used to infer the distance of the object from Earth.{{sfn|Gargaud|Amils|Quintanilla|Cleaves|2011|loc=Parallax}}}}{{sfn|Brown|Vallenari|Prusti|de Bruijne|2021}} with a large proper motion.{{efn|The movement of the star in the sky, relative to background stars.{{sfn|Gargaud|Amils|Quintanilla|Cleaves|2011|loc=Proper Motion}}}}{{sfn|Howell|Everett|Horch|Winters|2016|p=1}} TRAPPIST-1 has no companion stars.{{sfn|Howell|Everett|Horch|Winters|2016|pp=1,4}}
The star is a red dwarf of spectral class M{{val|8.0|0.5}},{{efn|Red dwarfs include the spectral type M and K.{{sfn|The SAO Encyclopedia of Astronomy|2022|loc=Red Dwarf}} Spectral types are used to categorise stars by their temperature.{{sfn|Gargaud|Amils|Quintanilla|Cleaves|2011|loc=Spectral Type}}}}{{sfn|Gillon|Jehin|Lederer|Delrez|2016|p=221}}{{sfn|Cloutier|Triaud|2016|p=4019}} making it relatively small and cold. Its mass is approximately 9% of that of the Sun,{{sfn|Lienhard|Queloz|Gillon|Burdanov|2020|pp=3790–3808}} being just sufficient to allow nuclear fusion to take place.{{sfn|Goldsmith|2018|p=82}}{{sfn|Fischer|Saur|2019|p=2}} With a radius 12% of that of the Sun, TRAPPIST-1 is only slightly larger than the planet Jupiter.{{sfn|Gillon|Jehin|Lederer|Delrez|2016|p=221}} The star has a low effective temperature{{efn|The effective temperature is the temperature a black body that emits the same amount of radiation would have.{{sfn|Gargaud|Amils|Quintanilla|Cleaves|2011|loc=Effective Temperature}}}} of {{cvt|2566|K|C}} making it, {{as of|2022|lc=y}}, the coldest-known star to host planets.{{sfn|Delrez|Murray|Pozuelos|Narita|2022|p=21}} TRAPPIST-1's density is unusually low for a red dwarf,{{sfn|Gillon|Meadows|Agol|Burgasser|2020|p=10}} and its luminosity, emitted mostly as infrared radiation, is about 0.055% that of the Sun.{{sfn|Lienhard|Queloz|Gillon|Burdanov|2020|pp=3790–3808}}{{sfn|Fabbian|Simoniello|Collet|Criscuoli|2017|p=770}} There is no evidence it has a stellar cycle.{{efn|The solar cycle is the Sun's 11-year long period, during which solar output varies by about 0.1%.{{sfn|Gargaud|Amils|Quintanilla|Cleaves|2011|loc=Variability (Stellar)}}}}{{sfn|Glazier|Howard|Corbett|Law|2020|p=2}}
TRAPPIST-1 is cold enough for condensates to form in its photosphere{{efn|The photosphere is a thin layer at the surface of a star, where most of its light is produced.{{sfn|Gargaud|Amils|Quintanilla|Cleaves|2011|loc=Photosphere}}}}; these have been detected through the polarization they induce in its radiation during transits of its planets.{{sfn|Miles-Páez|Zapatero Osorio|Pallé|Metchev|2019|p=38}} Low precision{{sfn|Wilson|Froning|Duvvuri|France|2021|p=10}} measurements from the XMM-Newton satellite{{sfn|Wilson|Froning|Duvvuri|France|2021|p=1}} and other facilities{{sfn|Wilson|Froning|Duvvuri|France|2021|p=2}} show that the star emits faint radiation at short wavelengths such as x-rays and UV radiation{{efn|Including Lyman-alpha radiation{{sfn|Pineda|Hallinan|2018|p=2}}}}.{{sfn|Wilson|Froning|Duvvuri|France|2021|p=1}} There are no detectable radio wave emissions.{{sfn|Pineda|Hallinan|2018|p=7}}
= Rotation period and age =
Measurements of TRAPPIST-1's rotation have yielded a period of 3.3 days; earlier measurements of 1.4 days appear to have been caused by changes in the distribution of starspots.{{sfn|Roettenbacher|Kane|2017|p=2}} Its rotational axis may be slightly offset from that of its planets.{{sfn|Günther|Berardo|Ducrot|Murray|2022|p=13}} Using a combination of techniques, the age of TRAPPIST-1 has been estimated at about {{val|7.6|2.2}} billion years,{{sfn|Burgasser|Mamajek|2017|p=1}} making it older than the Solar System.{{sfn|Acton|Slavney|Arvidson|Gaddis|2017|p=32}} It is expected to shine for ten trillion years – about 700 times{{sfn|Snellen|2017|p=423}} longer than the present age of the Universe{{sfn|Acton|Slavney|Arvidson|Gaddis|2017|p=34}} – whereas the Sun will run out of hydrogen and leave the main sequence{{efn|The main sequence is the longest stage of a star's lifespan, when it is fusing hydrogen.{{sfn|Gargaud|Amils|Quintanilla|Cleaves|2011|loc=Main Sequence}}}} in a few billion years.{{sfn|Snellen|2017|p=423}}
= Activity =
Numerous photospheric features have been detected on TRAPPIST-1.{{sfn|Morris|Agol|Hebb|Hawley|2018|p=1}} The Kepler and Spitzer Space Telescopes have observed possible bright spots, which may be faculae,{{efn|Faculae are bright spots on the photosphere.{{sfn|Gargaud|Amils|Quintanilla|Cleaves|2011|loc=Sun (and Young Sun)}}}}{{sfn|Morris|Agol|Davenport|Hawley|2018|p=5}}{{sfn|Linsky|2019|p=250}} although some of these may be too large to qualify as faculae.{{sfn|Morris|Agol|Davenport|Hawley|2018|p=6}} Bright spots are correlated to the occurrence of some stellar flares.{{efn|Flares are presumably magnetic phenomena lasting for minutes or hours during which parts of the star emit more radiation than usual.{{sfn|Gargaud|Amils|Quintanilla|Cleaves|2011|loc=Sun (and Young Sun)}}}}{{sfn|Gillon|Meadows|Agol|Burgasser|2020|p=5}}
The star has a strong magnetic field{{sfn|Airapetian|Barnes|Cohen|Collinson|2020|p=159}} with a mean intensity of about 600 gauss.{{efn|For comparison, a strong fridge magnet has a strength of about 100 gauss and Earth's magnetic field about 0.5 gauss.{{sfn|MagLab|2022}}}}{{sfn|Kochukhov|2021|p=28}} The magnetic field drives high chromospheric{{efn|The chromosphere is an outer layer of a star.{{sfn|Gargaud|Amils|Quintanilla|Cleaves|2011|loc=Sun (and Young Sun)}}}}{{sfn|Airapetian|Barnes|Cohen|Collinson|2020|p=159}} activity, and may be capable of trapping coronal mass ejections.{{efn|A coronal mass ejection is an eruption of coronal material to the outside of a star.{{sfn|Gargaud|Amils|Quintanilla|Cleaves|2011|loc=Sun (and Young Sun)}}{{sfn|Mullan|Paudel|2019|p=2}}}}{{sfn|Gargaud|Amils|Quintanilla|Cleaves|2011|loc=Sun (and Young Sun)}}{{sfn|Mullan|Paudel|2019|p=2}}
According to Garraffo et al. (2017), TRAPPIST-1 loses about {{val|3e-14}} solar masses per year{{sfn|Sakaue|Shibata|2021|p=1}} to the stellar wind, a rate which is about 1.5 times that of the Sun. {{sfn|Linsky|2019|pp=147–150}} Dong et al. (2018) simulated the observed properties of TRAPPIST-1 with a mass loss of {{val|4.1e-15}} solar masses per year.{{sfn|Sakaue|Shibata|2021|p=1}} Simulations to estimate mass loss are complicated because, as of 2019, most of the parameters that govern TRAPPIST-1's stellar wind are not known from direct observation.{{sfn|Fischer|Saur|2019|p=6}}
Planetary system
TRAPPIST-1 is orbited by seven planets, designated TRAPPIST-1b, 1c, 1d, 1e, 1f, 1g, and 1h{{sfn|Gonzales|Faherty|Gagné|Teske|2019|p=2}} in alphabetic order going out from the star.{{efn|Exoplanets are named in order of discovery as "b", "c" and so on; if multiple planets are discovered at once they are named in order of increasing orbital period.{{sfn|Schneider|Dedieu|Sidaner|Savalle|2011|p=8}} The term "TRAPPIST-1a" is used to refer to the star itself.{{sfn|Harbach|Moschou|Garraffo|Drake|2021|p=2}}}}{{sfn|Veras|Breedt|2017|p=2677}} These planets have orbital periods ranging from 1.5 days to 19 days,{{sfn|Agol|Dorn|Grimm|Turbet|2021}}{{sfn|Grimm|Demory|Gillon|Dorn|2018}}{{sfn|Delrez|Gillon|Triaud|Demory|2018|pp=3577–3597}} at distances of between {{convert|1,700,000|km|AU|order=flip|lk=on}}{{efn|One astronomical unit (AU) is the mean distance between the Earth and the Sun.{{sfn|Fraire|Feldmann|Walter|Fantino|2019|p=1657}}}} and {{convert|8,900,000|km|AU|order=flip}}.{{sfn|Goldsmith|2018|p=120}}
All of the planets are much closer to their star than Mercury is to the Sun,{{sfn|Angosto|Zaragoza|Melón|2017|p=86}} making the TRAPPIST-1 system very compact.{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=8}} Kral et al. (2018) did not detect any comets around TRAPPIST-1,{{sfn|Kral|Wyatt|Triaud|Marino|2018|p=2650}} and Marino et al. (2020) found no evidence of a Kuiper belt,{{sfn|Childs|Martin|Livio|2022|p=4}} although it is uncertain whether a Solar System-like belt around TRAPPIST-1 would be observable from Earth.{{sfn|Martin|Livio|2022|p=6}} Observations with the Atacama Large Millimeter Array have found no evidence of a circumstellar dust disk.{{sfn|Marino|Wyatt|Kennedy|Kama|2020|p=6071}}
The inclinations of the orbits relative to the system's ecliptic are less than 0.1 degrees{{efn|For comparison, Earth's orbit around the Sun is inclined by about 1.578 degrees.{{sfn|Handbook of Scientific Tables|2022|p=2}}}},{{sfn|Agol|Dorn|Grimm|Turbet|2021|p=14}} making TRAPPIST-1 the flattest planetary system in the NASA Exoplanet Archive.{{sfn|Heising|Sasselov|Hernquist|Luisa Tió Humphrey|2021|p=1}} The orbits are highly circular, with minimal eccentricities.{{efn|The inner two planets' orbits may be circular, while the others could have a small eccentricity.{{sfn|Brasser|Pichierri|Dobos|Barr|2022|p=2373}}}}{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=8}} and are well-aligned with the spin axis of TRAPPIST-1.{{sfn|Demory|Pozuelos|Chew|Sabin|2020|p=19}} The planets orbit in the same plane and, from the perspective of the Solar System, transit TRAPPIST-1 during their orbit{{sfn|Maltagliati|2017|p=1}} and frequently pass in front of each other.{{sfn|Kane|Jansen|Fauchez|Selsis|2021|p=1}}
{{Orbitbox planet begin
| mass_unit = Earth masses
| radius_unit = Earth radii
| name = TRAPPIST-1
| table_ref ={{sfn|Agol|Dorn|Grimm|Turbet|2021}}{{sfn|Grimm|Demory|Gillon|Dorn|2018}}{{sfn|Delrez|Gillon|Triaud|Demory|2018|pp=3577–3597}}
| eccentricity_ref ={{sfn|Grimm|Demory|Gillon|Dorn|2018}}
| inclination_ref ={{sfn|Agol|Dorn|Grimm|Turbet|2021}}
}}
{{Orbitbox planet
| exoplanet = b
| mass_earth = 1.374{{±|0.069}}
| period = 1.510826{{±|0.000006}}
| semimajor = 0.01154{{±|0.0001}}
| eccentricity = 0.00622{{±|0.00304}}
| inclination = {{val|89.728|0.165}}
| radius_earth = 1.116{{±|0.014|0.012}}
}}
{{Orbitbox planet
| exoplanet = c
| mass_earth = 1.308{{±|0.056}}
| period = 2.421937{{±|0.000018}}
| semimajor = 0.01580{{±|0.00013}}
| eccentricity = 0.00654{{±|0.00188}}
| inclination = {{val|89.778|0.118}}
| radius_earth = 1.097{{±|0.014|0.012}}
}}
{{Orbitbox planet
| exoplanet = d
| mass_earth = 0.388{{±|0.012}}
| period = 4.049219{{±|0.000026}}
| semimajor = 0.02227{{±|0.00019}}
| eccentricity = 0.00837{{±|0.00093}}
| inclination = {{val|89.896|0.077}}
| radius_earth = 0.778{{±|0.011|0.010}}
}}
{{Orbitbox planet
| exoplanet = e
| mass_earth = 0.692{{±|0.022}}
| period = 6.101013{{±|0.000035}}
| semimajor = 0.02925{{±|0.00025}}
| eccentricity = 0.00510{{±|0.00058}}
| inclination = {{val|89.793|0.048}}
| radius_earth = 0.920{{±|0.013|0.012}}
}}
{{Orbitbox planet
| exoplanet = f
| mass_earth = 1.039{{±|0.031}}
| period = 9.207540{{±|0.000032}}
| semimajor = 0.03849{{±|0.00033}}
| eccentricity = 0.01007{{±|0.00068}}
| inclination = {{val|89.740|0.019}}
| radius_earth = 1.045{{±|0.013|0.012}}
}}
{{Orbitbox planet
| exoplanet = g
| mass_earth = 1.321{{±|0.038}}
| period = 12.352446{{±|0.000054}}
| semimajor = 0.04683{{±|0.0004}}
| eccentricity = 0.00208{{±|0.00058}}
| inclination = {{val|89.742|0.012}}
| radius_earth = 1.129{{±|0.015|0.013}}
}}
{{Orbitbox planet
| exoplanet = h
| mass_earth = 0.326{{±|0.020}}
| period = 18.772866{{±|0.000214}}
| semimajor = 0.06189{{±|0.00053}}
| eccentricity = 0.00567{{±|0.00121}}
| inclination = {{val|89.805|0.013}}
| radius_earth = 0.775{{±|0.014|0.014}}
}}
{{Orbitbox end}}
= Size and composition =
The radii of the planets are estimated to range between 77.5{{±|1.4|1.4}} and 112.9{{±|1.5|1.3}}% of Earth's radius.{{sfn|Srinivas|2017|p=17}} The planet:star mass ratio of the TRAPPIST-1 system resembles that of the moon:planet ratio of the Solar System's gas giants.{{sfn|Madhusudhan|2020|p=6-5}}
The TRAPPIST-1 planets are expected to have compositions that resemble each other{{sfn|McDonough|Yoshizaki|2021|p=9}} as well as Earth.{{sfn|Linsky|2019|p=198}} The estimated densities of the planets are lower than Earth's{{sfn|Agol|Dorn|Grimm|Turbet|2021|p=2}} which may imply that they have large amounts of volatile chemicals{{efn|A volatile is an element or compound with a low boiling point, such as ammonia, carbon dioxide, methane, nitrogen, sulfur dioxide or water.{{sfn|Gargaud|Amils|Quintanilla|Cleaves|2011|loc=Volatile}}}}. Alternatively, their cores may be smaller than that of Earth{{sfn|Agol|Dorn|Grimm|Turbet|2021|p=30}} or include large amounts of elements other than iron;{{sfn|Schlichting|Young|2022|p=16}} their iron may exist in an oxidised form rather than as a core,{{sfn|Agol|Dorn|Grimm|Turbet|2021|p=30}} or that they are rocky planets with less iron than Earth.{{sfn|Gillon|Meadows|Agol|Burgasser|2020|p=11}} The densities are too low for a pure magnesium silicate composition,{{efn|The composition of the mantle of rocky planets is typically approximated as a magnesium silicate.{{sfn|Hakim|Rivoldini|Van Hoolst|Cottenier|2018|p=3}}}} requiring the presence of lower-density molecular compounds such as water.{{sfn|Hakim|Rivoldini|Van Hoolst|Cottenier|2018|p=70}}{{sfn|Barth|Carone|Barnes|Noack|2021|p=1326}} Planets b, d, f, g and h are expected to contain large quantities of volatile compounds.{{sfn|Grimm|Demory|Gillon|Dorn|2018|p=8}} The planets may have deep atmospheres and oceans, and contain vast amounts of ice.{{sfn|Lingam|Loeb|2021|p=594}} A number of compositions are possible considering the large uncertainties in their densities.{{sfn|Van Hoolst|Noack|Rivoldini|2019|p=598}} The photospheric features of the star may introduce inaccuracies in measurements of TRAPPIST-1's planets,{{sfn|Morris|Agol|Hebb|Hawley|2018|p=1}} including their densities being underestimated by 8{{su|b= -7|p=+20}} percent,{{sfn|Linsky|2019|p=253}} and causing incorrect estimates of their water content.{{sfn|Linsky|2019|p=254}}
= Resonance and tides =
File:PIA21427 - TRAPPIST-1 Planetary Orbits and Transits.ogg
The planets are in orbital resonances;{{sfn|Aschwanden|Scholkmann|Béthune|Schmutz|2018|p=6}} the durations of their orbits have ratios of 8:5, 5:3, 3:2, 3:2, 4:3 and 3:2 between neighbouring planet pairs,{{sfn|Grimm|Demory|Gillon|Dorn|2018|p=3}} and each set of three is in a Laplace resonance.{{efn|A Laplace resonance is an orbital resonance that consists of three bodies, similar to the Galilean moons Europa, Ganymede and Io around Jupiter.{{sfn|Madhusudhan|2020|p=11-2}}}}{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=8}} Simulations have shown such resonances can remain stable over billions of years but that their stability is strongly dependent on initial conditions; for many initial configurations, they become unstable after less than a million years. Scientists have used this conditional stability to make estimates of the masses of the TRAPPIST-1 planets.{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=10}} The resonances enhance the exchange of angular momentum between the planets, resulting in measurable variations – earlier or later – in their transit times in front of TRAPPIST-1. These variations yield information on the planetary system,{{sfn|Grimm|Demory|Gillon|Dorn|2018|p=2}} such as the planets' masses, when other techniques are not available.{{sfn|Ducrot|2021|p=5}} The resonances and the proximity to the host star have led to comparisons between the TRAPPIST-1 system and the Galilean moons of Jupiter.{{sfn|Maltagliati|2017|p=1}} Kepler-223 is another exoplanet system with a TRAPPIST-1-like long resonance.{{sfn|Meadows|Schmidt|2020|p=4}}
The closeness of the planets to TRAPPIST-1 results in tidal interactions{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|pp=12–13}} stronger than those on Earth.{{sfn|Lingam|Loeb|2021|p=144}} Tidal forces are dominated by the star's contribution and result in all of the planets having reached an equilibrium with slow planetary rotations and tidal locking,{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|pp=12–13}} which can lead to the sychronisation of a planet's rotation to its revolution around its star.{{efn|This causes one half of the planet to perpetually face the star in a permanent day and the other half perpetually face away from the star in a permanent night.{{sfn|Goldsmith|2018|p=123}}}}{{sfn|Wolf|2017|p=1}} The mutual interactions of the planets, however, could prevent them from reaching full synchronisation, which would have important implications for the planets' climates. The interaction could force periodic or episodic full rotations of the planets' surfaces with respect to the star on timescales of several Earth years.{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=13}} Vinson, Tamayo and Hansen (2019) found the planets TRAPPIST-1d, e and f likely have chaotic rotations due to mutual interactions, preventing them from becoming synchronized to the star. Lack of synchronization potentially makes the planets more habitable.{{sfn|Vinson|Tamayo|Hansen|2019|p=5747}} Other processes that can prevent synchronous rotation are torques induced by stable triaxial deformation of the planets,{{efn|Where a planet, rather than being a symmetric sphere, has a different radius for each of the three main axes.{{sfn|Elshaboury|Abouelmagd|Kalantonis|Perdios|2016|p=5}}}} which would allow them to enter 3:2 resonances.{{sfn|Zanazzi|Lai|2017|p=2879}}
The resonances continually excite the eccentricities of the TRAPPIST-1 planets, preventing their orbits from becoming fully circular. As a consequence,{{sfn|Barr|Dobos|Kiss|2018|pp=1–2}} the planets are likely to undergo substantial tidal heating,{{efn|Tidal heating is heating induced by tides, which deform planets and heat them. This is particularly likely in systems with more than one planet when the planets interact with each other.{{sfn|Turbet|Bolmont|Leconte|Forget|2018|p=7}}}} which would facilitate volcanism and outgassing, especially on the innermost planets. This heat source is likely dominant over radioactive decay, both of which have substantial uncertainties and are considerably less than the stellar radiation received.{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=14}} According to Luger et al. (2017), tidal heating of the four innermost planets is expected to be greater than Earth's inner heat flux,{{sfn|Luger|Sestovic|Kruse|Grimm|2017|p=2}} and Quick et al. (2020) note that tidal heating in the outer planets could be comparable to that in the Solar System bodies Europa, Enceladus, and Triton.{{sfn|Quick|Roberge|Mlinar|Hedman|2020|p=19}}
Tidal heating could influence temperatures of the night sides and cold areas where volatiles may be trapped, and gases are expected to accumulate; it would also influence the properties of any subsurface oceans{{sfn|Turbet|Bolmont|Leconte|Forget|2018|p=8}} where volcanism and hydrothermal venting{{efn|Hydrothermal vents are hot springs that occur underwater, and are hypothesised to be places where life could originate.{{sfn|Gargaud|Amils|Quintanilla|Cleaves|2011|loc=Hot Vent Microbiology}}}} could occur.{{sfn|Kendall|Byrne|2020|p=1}} It may be sufficient to melt the mantles of the four innermost planets, in whole or in part,{{sfn|Kislyakova|Noack|Johnstone|Zaitsev|2017|p=878}} potentially forming subsurface magma oceans.{{sfn|Barr|Dobos|Kiss|2018|p=12}} Tidal heating would increase degassing{{efn|Degassing is the release of gases, which can end up forming an atmosphere, from the mantle or from magma.{{sfn|Gargaud|Amils|Quintanilla|Cleaves|2011|loc=Degassing}}}} from the mantle and facilitate the establishment of atmospheres around the planets.{{sfn|Kislyakova|Noack|Johnstone|Zaitsev|2017|p=880}} Intense tides could fracture the planets' crusts, inducing earthquakes, even if they are not sufficiently strong to trigger the onset of plate tectonics.{{sfn|Zanazzi|Triaud|2019|p=61}} The TRAPPIST-1 planets may have substantial seismic activity due to tidal effects.{{sfn|Hurford|Henning|Maguire|Lekic|2020|p=11}} Tides can also occur in the planetary atmospheres.{{sfn|Navarro|Merlis|Cowan|Gomez|2022|p=4}}
= Skies and impact of stellar light =
File:Comparison of TRAPPIST-1 to the Solar System.jpg of the Solar System|alt=TRAPPIST-1 planets are of similar or smaller size than Earth and have similar or smaller densities|upright=2]]
Because most of TRAPPIST-1's radiation is in the infrared region, there may be very little visible light on the planets' surfaces; Amaury Triaud, one of the system's co-discoverers, said the skies would never be brighter than Earth's sky at sunset{{sfn|Srinivas|2017|p=16}} and only a little brighter than a night with a full moon. Ignoring atmospheric effects, illumination would be orange-red.{{sfn|Radnóti|2021|p=4}} All of the planets would be visible from each other and would, in many cases, appear larger than Earth's Moon in the sky of Earth;{{sfn|Angosto|Zaragoza|Melón|2017|p=86}} observers on TRAPPIST-1e, f and g, however, could never experience a total stellar eclipse.{{sfn|Veras|Breedt|2017|p=2677}} The star's long-wavelength radiation would be absorbed to a greater degree by water and carbon dioxide than sunlight on Earth; it would also be scattered less by the atmosphere{{sfn|O'Malley-James|Kaltenegger|2017|p=27}} and less reflected by ice,{{sfn|Bourrier|Wit|Bolmont|Stamenković|2017|p=7}} although the development of highly reflective hydrohalite ice may negate this effect.{{sfn|Shields|Carns|2018|p=1}} The same amount of radiation results in a warmer planet compared to Sun-like irradiation;{{sfn|O'Malley-James|Kaltenegger|2017|p=27}} more radiation would be absorbed by the planets' upper atmosphere than by the lower layers, making the atmosphere more stable and less prone to convection.{{sfn|Eager|Reichelt|Mayne|Lambert|2020|p=10}}
= Habitable zone =
{{further|Habitability of red dwarf systems}}
File:PIA21424 - The TRAPPIST-1 Habitable Zone.jpg of TRAPPIST-1 and the Solar System. The displayed planetary surfaces are speculative.]]
For a dim star like TRAPPIST-1, the habitable zone{{efn|The habitable zone is the region around a star where temperatures are neither too hot nor too cold for the existence of liquid water; it is also called the "Goldilocks zone".{{sfn|Cisewski|2017|p=23}}{{sfn|Airapetian|Barnes|Cohen|Collinson|2020|p=159}} }} is located closer to the star than for the Sun.{{sfn|O'Malley-James|Kaltenegger|2017|p=26}} Three or four{{sfn|Wilson|Froning|Duvvuri|France|2021|p=1}} planets might be located in the habitable zone; these include {{em|e}}, {{em|f}}, and {{em|g}};{{sfn|O'Malley-James|Kaltenegger|2017|p=26}} or {{em|d}}, {{em|e}}, and {{em|f}}. {{As of|2017}}, this is the largest-known number of planets within the habitable zone of any known star or star system.{{sfn|Awiphan|2018|p=13}} The presence of liquid water on any of the planets depends on several other factors, such as albedo (reflectivity),{{sfn|Gargaud|Amils|Quintanilla|Cleaves|2011|loc=Albedo}} the presence of an atmosphere{{sfn|Alberti|Carbone|Lepreti|Vecchio|2017|p=6}} and its greenhouse effect.{{sfn|Barstow|Irwin|2016|p=92}} Surface conditions are difficult to constrain without better knowledge of the planets' atmospheres.{{sfn|Alberti|Carbone|Lepreti|Vecchio|2017|p=6}} A synchronously rotating planet might not entirely freeze over if it receives too little radiation from its star because the day-side could be sufficiently heated to halt the progress of glaciation.{{sfn|Checlair|Menou|Abbot|2017|p=9}} Other factors for the occurrence of liquid water include the presence of oceans and vegetation;{{sfn|Kral|Wyatt|Triaud|Marino|2018|p=2649}} the reflective properties of the land surface; the configuration of continents and oceans;{{sfn|Rushby|Shields|Wolf|Laguë|2020|p=13}} the presence of clouds;{{sfn|Carone|Keppens|Decin|Henning|2018|p=4677}} and sea ice dynamics.{{sfn|Yang|Ji|2018|p=1}} The effects of volcanic activity may extend the system's habitable zone to TRAPPIST-1h.{{sfn|O'Malley-James|Kaltenegger|2019|p=4542}}
Intense extreme ultraviolet (XUV) and X-ray radiation{{sfn|Bourrier|Wit|Bolmont|Stamenković|2017|p=2}} can split water into its component parts of hydrogen and oxygen, and heat the upper atmosphere until they escape from the planet. This was particularly important early in the star's history, when radiation was more intense and could have heated every planet's water to its boiling point.{{sfn|Bourrier|Wit|Bolmont|Stamenković|2017|p=7}} This process is believed to have removed water from Venus.{{sfn|Bolmont|Selsis|Owen|Ribas|2017|p=3729}} In the case of TRAPPIST-1, different studies with different assumptions on the kinetics, energetics, and XUV emissions have come to different conclusions on whether any TRAPPIST-1 planet may retain substantial amounts of water. Because the planets are most likely synchronized to their host star, any water present could become trapped on the planets' night sides and would be unavailable to support life unless heat transport by the atmosphere{{sfn|Bolmont|Selsis|Owen|Ribas|2017|p=3739}} or tidal heating are intense enough to melt ice.{{sfn|Bolmont|Selsis|Owen|Ribas|2017|p=3740}}
= Moons =
No moons with a size comparable to Earth's have been detected in the TRAPPIST-1 system,{{sfn|Kane|2017|p=4}} and they are unlikely in such a densely packed planetary system. This is because moons would likely be either destroyed by their planet's gravity after entering its Roche limit{{sfn|Gargaud|Amils|Quintanilla|Cleaves|2011|loc=Roche Limit}} or stripped from the planet by leaving its Hill radius.{{sfn|Kane|2017|p=3}} While the TRAPPIST-1 planets appear in an analysis of potential exomoon hosts, they do not appear in the list of habitable-zone exoplanets that could host a moon for a substantial time{{efn|The Hubble time, which is slightly longer than the current age of the Universe.{{sfn|Martínez-Rodríguez|Caballero|Cifuentes|Piro|2019|p=6}}}}.{{sfn|Martínez-Rodríguez|Caballero|Cifuentes|Piro|2019|p=8}} Despite these factors, it is possible the planets could host moons.{{sfn|Allen|Becker|Fuse|2018|p=1}}
= Magnetic effects =
The TRAPPIST-1 planets are expected to be within the Alfvén surface of their host star,{{sfn|Farrish|Alexander|Maruo|DeRosa|2019|p=7}} the area around the star within which any planet would directly magnetically interact with the corona of the star, possibly destabilising any atmosphere the planet has.{{sfn|Farrish|Alexander|Maruo|DeRosa|2019|p=6}} Stellar energetic particles would not create a substantial radiation hazard for organisms on TRAPPIST-1 planets if atmospheres reached pressures of about {{val|1|ul=bar}}.{{sfn|Airapetian|Barnes|Cohen|Collinson|2020|p=164}} Estimates of radiation fluxes have considerable uncertainties due to the lack of knowledge about the structure of TRAPPIST-1's magnetic field.{{sfn|Fraschetti|Drake|Alvarado-Gómez|Moschou|2019|p=11}} Induction heating from the star's time-varying electrical and magnetic fields{{sfn|Kislyakova|Noack|Johnstone|Zaitsev|2017|p=878}}{{sfn|Grayver|Bower|Saur|Dorn|2022|p=9}} may occur on its planets{{sfn|Chao|deGraffenried|Lach|Nelson|2021|p=5}} but this would make no substantial contribution to their energy balance{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=14}} and is vastly exceeded by tidal heating.{{sfn|Quick|Roberge|Mlinar|Hedman|2020|p=19}}
= Formation history =
The TRAPPIST-1 planets most likely formed further from the star and migrated inwards,{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=36}} although it is possible they formed in their current locations.{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=9}} According to Ormel et al. (2017), the planets formed when a streaming instability{{efn|A streaming instability is a process where interactions between gas and solid particles cause the latter to clump together in filaments. These filaments can give rise to the precursor bodies of planets.{{sfn|Ormel|Liu|Schoonenberg|2017|p=3}}}} at the water-ice line gave rise to precursor bodies, which accumulated additional fragments and migrated inwards, eventually giving rise to planets.{{sfn|Liu|Ji|2020|p=24}} The migration may initially have been fast and later slowed,{{sfn|Ogihara|Kokubo|Nakano|Suzuki|2022|p=6}} and tidal effects may have further influenced the formation processes.{{sfn|Brasser|Pichierri|Dobos|Barr|2022|p=2374}} The distribution of the fragments would have controlled the final mass of the planets, which would consist of approximately 10% water; which is consistent with observational inference.{{sfn|Liu|Ji|2020|p=24}} Resonant chains like those of TRAPPIST-1 usually become unstable when the gas disk that gave rise to them dissipates, but in this case, the planets remained in resonance.{{sfn|Bean|Raymond|Owen|2021|p=9}} The resonance may have been either present from the system's formation and was preserved when the planets simultaneously moved inwards,{{sfn|Grimm|Demory|Gillon|Dorn|2018|p=13}} or it might have formed later when inward-migrating planets accumulated at the outer edge of the gas disk and interacted with each other.{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=9}} Inward-migrating planets would contain substantial amounts of water – too much for it to entirely escape – whereas planets that formed in their current location would most likely lose all water.{{sfn|Marino|Wyatt|Kennedy|Kama|2020|p=6067}}{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|pp=9–10}} According to Flock et al. (2019), the orbital distance of the innermost planet TRAPPIST-1b is consistent with the expected radius of an inward-moving planet around a star that was one order of magnitude brighter in the past,{{sfn|Flock|Turner|Mulders|Hasegawa|2019|p=10}} and with the cavity in the protoplanetary disc created by TRAPPIST-1's magnetic field.{{sfn|Heising|Sasselov|Hernquist|Luisa Tió Humphrey|2021|p=5}} Alternatively, TRAPPIST-1h may have formed in or close to its current location.{{sfn|Gressier|Mori|Changeat|Edwards|2022|p=2}}
The presence of additional bodies and planetesimals early in the system's history would have destabilised the TRAPPIST-1 planets' resonance if the bodies were massive enough.{{sfn|Raymond|Izidoro|Bolmont|Dorn|2021|p=1}} Raymond et al. (2021) concluded the TRAPPIST-1 planets assembled in 1–2 million years, after which time little additional mass was accreted.{{sfn|Raymond|Izidoro|Bolmont|Dorn|2021|p=2}} This would limit any late delivery of water to the planets{{sfn|Raymond|Izidoro|Bolmont|Dorn|2021|p=3}} and also implies the planets cleared the neighbourhood{{efn|According to the International Astronomical Union criteria, a body has to clear its neighbourhood to qualify as a planet in the Solar System.{{sfn|Raymond|Izidoro|Bolmont|Dorn|2021|p=4}}}} of any additional material.{{sfn|Raymond|Izidoro|Bolmont|Dorn|2021|p=4}} The lack of giant impact events (the rapid formation of the planets would have quickly exhausted pre-planetary material) would help the planets preserve their volatile materials.{{sfn|Gabriel|Allen-Sutter|2021|p=6}}
Due to a combination of high insolation, the greenhouse effect of water vapour atmospheres and remnant heat from the process of planet assembly, the TRAPPIST-1 planets would likely have initially had molten surfaces. Eventually the surfaces would cool until the magma oceans solidified, which in the case of TRAPPIST-1b may have taken between a few billions of years, or a few millions of years. The outer planets would then have become cold enough for water vapour to condense.{{sfn|Krissansen-Totton|Fortney|2022|p=8}}
List of planets
class="wikitable" style="width:60%; text-align:center; margin-left:auto; margin-right:auto;"
|+ Physical characteristics of the planets |
Name, inward first
! Earth units of radiant flux{{sfn|Agol|Dorn|Grimm|Turbet|2021}} ! Temperature{{sfn|Lienhard|Queloz|Gillon|Burdanov|2020|pp=3790–3808}} (equilibrium, assumes null Bond albedo) ! Earth units of surface gravity{{sfn|Agol|Dorn|Grimm|Turbet|2021}} ! Orbital resonance with TRAPPIST-1b ! Orbital resonance with inward planet |
---|
b
| 4.153{{±|0.160}} | {{convert|397.6|±|3.8|K|C F|1}}{{efn|≥{{convert|1400|K|C F |
2}} in the atmosphere; {{convert|750 |
1500|K|C F |
1}} on the surface{{sfn|Grimm|Demory|Gillon|Dorn|2018}}}}
| 1.102{{±|0.052}} | — | — |
c
| 2.214{{±|0.085}} | {{convert|339.7|±|3.3|K|C F|1}} | 1.086{{±|0.043}} | ~5:8 | ~5:8 |
d
| 1.115{{±|0.043}} | {{Convert|286.2|±|2.8|K|C F|1}} | 0.624{{±|0.019}} | ~3:8 | ~3:5 |
e
| 0.646{{±|0.025}} | {{convert|249.7|±|2.4|K|C F|1}} | 0.817{{±|0.024}} | ~1:4 | ~2:3 |
f
| 0.373{{±|0.014}} | {{convert|217.7|±|2.1|K|C F|1}} | 0.951{{±|0.024}} | ~1:6 | ~2:3 |
g
| 0.252{{±|0.010}} | {{convert|197.3|±|1.9|K|C F|1}} | 1.035{{±|0.026}} | ~1:8 | ~3:4 |
h
| 0.144{{±|0.006}} | {{convert|171.7|±|1.7|K|C F|1}} | 0.570{{±|0.038}} | ~1:12 | ~2:3 |
{{wide image|TRAPPIST-1_system_to_scale.svg|2048px|The TRAPPIST-1 system with distances to scale, compared with the Moon and Earth|alt=Distances between TRAPPIST-1 planets are roughly comparable with Earth-Moon distances}}
= TRAPPIST-1b=
{{Main|TRAPPIST-1b}}
TRAPPIST-1b has an semi-major axis of {{convert|0.0115|AU|km|abbr=out}}{{sfn|Grimm|Demory|Gillon|Dorn|2018|p=6}} and orbits it in 1.51 Earth days. It is expected to be tidally locked to the star. The planet is outside the habitable zone;{{sfn|Gillon|Jehin|Lederer|Delrez|2016|p=222}} its expected irradiation is more than four times that of Earth.{{sfn|Gillon|Jehin|Lederer|Delrez|2016|p=222}} TRAPPIST-1b has a slightly larger measured diameter and mass than Earth but estimates of its density imply it does not exclusively consist of rock.{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=24}} Owing to its black-body temperature of {{convert|124|C|K}}, TRAPPIST-1b may have had a runaway greenhouse effect similar to that of Venus;{{sfn|Airapetian|Barnes|Cohen|Collinson|2020|p=159}} its atmosphere, if present, may be similarly deep, dense, and hot.{{sfn|Turbet|Bolmont|Leconte|Forget|2018|p=1}} Based on numerous climate models, the planet would have been desiccated by TRAPPIST-1's stellar wind and radiation;{{sfn|Linsky|2019|pp=198–199}}{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=28}} it could be quickly losing hydrogen and therefore any hydrogen-dominated atmosphere.{{efn|On the basis of the Lyman-alpha radiation emissions, TRAPPIST-1b may be losing hydrogen at a rate of {{val|4.6e7||u=g/s}}.{{sfn|Grenfell|Leconte|Forget|Godolt|2020|p=11}}}} Water, if any exists, could persist only in specific settings on the planet,{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=29}} whose surface temperature could be as high as {{convert|1200|C|K}}, making TRAPPIST-1b a candidate magma ocean planet.{{sfn|Grenfell|Leconte|Forget|Godolt|2020|p=18}}
= TRAPPIST-1c=
{{Main|TRAPPIST-1c}}
TRAPPIST-1c has a semi-major axis of {{convert|0.0158|AU|km|abbr=on}}{{sfn|Grimm|Demory|Gillon|Dorn|2018|p=6}} and orbits its star every 2.42 Earth days. It is close enough to TRAPPIST-1 to be tidally locked{{sfn|Gillon|Jehin|Lederer|Delrez|2016|p=222}} and could have either no atmosphere or a thick, Venus-like one.{{sfn|Turbet|Bolmont|Leconte|Forget|2018|p=1}} TRAPPIST-1c is outside the habitable zone{{sfn|Gillon|Jehin|Lederer|Delrez|2016|p=222}} because it receives about twice as much stellar irradiation as Earth{{sfn|Agol|Dorn|Grimm|Turbet|2021|p=21}} and thus either is or has been a runaway greenhouse.{{sfn|Airapetian|Barnes|Cohen|Collinson|2020|p=159}} Based on numerous climate models, the planet would have been desiccated by TRAPPIST-1's stellar wind and radiation.{{sfn|Linsky|2019|pp=198–199}} TRAPPIST-1c could harbour water only in specific settings on its surface.{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=29}} Although 2017 observations showed no escaping hydrogen,{{sfn|Wilson|Froning|Duvvuri|France|2021|p=2}} observations in 2020 by the Hubble Space Telescope (HST) indicate that hydrogen may be escaping at a rate of {{val|1.4e7|u=g/s}}.{{sfn|Grenfell|Leconte|Forget|Godolt|2020|p=11}}
= TRAPPIST-1d=
{{Main|TRAPPIST-1d}}
TRAPPIST-1d has a semi-major axis of {{convert|0.022|AU|km|abbr=on}} and an orbital period of 4.05 Earth days. It is more massive but less dense than Mars.{{sfn|Stevenson|2019|p=329}} Based on fluid dynamical arguments, TRAPPIST-1d is expected to have weak temperature gradients on its surface if it is tidally locked,{{sfn|Pierrehumbert|Hammond|2019|p=285}} and may have significantly different stratospheric dynamics than Earth.{{sfn|Carone|Keppens|Decin|Henning|2018|p=4683}} Numerous climate models suggest that the planet may{{sfn|Linsky|2019|pp=198–199}} or may not have been desiccated by TRAPPIST-1's stellar wind and radiation;{{sfn|Linsky|2019|pp=198–199}} density estimates, if confirmed, indicate it is not dense enough to consist solely of rock.{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=24}} The current state of TRAPPIST-1d depends on its rotation and climatic factors like cloud feedbacks;{{efn|Clouds on the day side reflecting starlight could cool TRAPPIST-1d down to temperatures that allow the presence of liquid water.{{sfn|Turbet|Bolmont|Leconte|Forget|2018|p=17}}}}{{sfn|Turbet|Bolmont|Leconte|Forget|2018|p=1}} it is close to the inner edge of the habitable zone, but the existence of liquid water or a runaway greenhouse effect that would render it uninhabitable is dependent on detailed atmospheric conditions.{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|pp=5–6}} Water could persist in specific settings on the planet.{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=29}}
= TRAPPIST-1e=
{{Main|TRAPPIST-1e}}
TRAPPIST-1e has a semi-major axis of {{convert|0.029|AU|km|abbr=on}}{{sfn|Grimm|Demory|Gillon|Dorn|2018|p=6}} and orbits its star every 6.10 Earth days.{{sfn|Agol|Dorn|Grimm|Turbet|2021|p=10}} It has density similar to Earth's.{{sfn|Stevenson|2019|p=327}} Based on numerous climate models, the planet is the most likely of the system to have retained its water,{{sfn|Linsky|2019|pp=198–199}} and the most likely to have liquid water for many climate states. A dedicated climate model project called TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI) has been launched to study potential climate states of this planet.{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|pp=29–30}} Based on HST observations of the Lyman-alpha radiation emissions, TRAPPIST-1e may be losing hydrogen at a rate of {{val|0.6e7|u=g/s}}.{{sfn|Grenfell|Leconte|Forget|Godolt|2020|p=11}}
TRAPPIST-1e is in a comparable position within the habitable zone to Proxima Centauri b,{{efn|The exoplanet Proxima Centauri b resides in the habitable zone of the nearest star to the Solar System.{{sfn|Meadows|Arney|Schwieterman|Lustig-Yaeger|2018|p=133}}}}{{sfn|Janjic|2017|p=61}}{{sfn|Meadows|Arney|Schwieterman|Lustig-Yaeger|2018|p=141}} which also has an Earth-like density.{{sfn|Stevenson|2019|p=327}} TRAPPIST-1e could have retained masses of water equivalent to several of Earth's oceans.{{sfn|Airapetian|Barnes|Cohen|Collinson|2020|p=159}} Moderate quantities of carbon dioxide could warm TRAPPIST-1e to temperatures adequate for liquid water to exist.{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=28}}
= TRAPPIST-1f=
{{Main|TRAPPIST-1f}}
TRAPPIST-1f has a semi-major axis of {{convert|0.038|AU|km|abbr=on}}{{sfn|Grimm|Demory|Gillon|Dorn|2018|p=6}} and orbits its star every 9.21 Earth days.{{sfn|Agol|Dorn|Grimm|Turbet|2021|p=10}} It is likely too distant from its host star to sustain liquid water, instead forming an entirely glaciated snowball planet.{{sfn|Linsky|2019|pp=198–199}} Moderate quantities of CO2 could warm TRAPPIST-1f to temperatures adequate for liquid water to exist.{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=29}} TRAPPIST-1f may have retained masses of water equivalent to several of Earth's oceans{{sfn|Airapetian|Barnes|Cohen|Collinson|2020|p=159}} that could comprise up to half of the planet's mass;{{sfn|Kane|Arney|Byrne|Dalba|2021|p=16}} it could thus be an ocean planet.{{efn|Ocean bodies can still be referred to as such when they are covered by ice.{{sfn|Kane|Arney|Byrne|Dalba|2021|p=14}}}}{{sfn|Kane|Arney|Byrne|Dalba|2021|p=17}}
= TRAPPIST-1g=
{{Main|TRAPPIST-1g}}
TRAPPIST-1g has a semi-major axis of {{convert|0.047|AU|km|abbr=on}}{{sfn|Grimm|Demory|Gillon|Dorn|2018|p=6}} and orbits its star every 12.4 Earth days.{{sfn|Agol|Dorn|Grimm|Turbet|2021|p=10}} It is likely too distant from its host star to sustain liquid water, instead forming a snowball planet.{{sfn|Linsky|2019|pp=198–199}} Either moderate quantities of CO2{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=29}} or internal heat from radioactive decay and tidal heating may warm its surface to above the melting point of water.{{sfn|Airapetian|Barnes|Cohen|Collinson|2020|p=171}} TRAPPIST-1g may have retained masses of water equivalent to several of Earth's oceans;{{sfn|Airapetian|Barnes|Cohen|Collinson|2020|p=159}} density estimates of the planet, if confirmed, indicate it is not dense enough to consist solely of rock.{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=24}} Up to half of its mass may be water.{{sfn|Kane|Arney|Byrne|Dalba|2021|p=16}}
= TRAPPIST-1h=
{{Main|TRAPPIST-1h}}
TRAPPIST-1h has a semi-major axis of {{convert|0.062|AU|km}}; it is the system's least massive known planet{{sfn|Grimm|Demory|Gillon|Dorn|2018|p=6}} and orbits its star every 18.9 Earth days.{{sfn|Agol|Dorn|Grimm|Turbet|2021|p=10}} It is likely too distant from its host star to sustain liquid water and may be a snowball planet,{{sfn|Linsky|2019|pp=198–199}} or have a methane/nitrogen atmosphere resembling that of Titan.{{sfn|Turbet|Bolmont|Leconte|Forget|2018|p=2}} Large quantities of CO2, hydrogen or methane,{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=30}} or internal heat from radioactive decay and tidal heating,{{sfn|Airapetian|Barnes|Cohen|Collinson|2020|p=171}} would be needed to warm TRAPPIST-1h to temperatures adequate for liquid water to exist.{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=30}} TRAPPIST-1h could have retained masses of water equivalent to several of Earth's oceans.{{sfn|Airapetian|Barnes|Cohen|Collinson|2020|p=159}}
Potential planetary atmospheres
File:Curvas de luz de los siete planetas de TRAPPIST-1 durante su tránsito.png or obstruction of starlight. Larger planets create deeper dips and further planets create longer dips.]]
{{As of|2020}}, there is no definitive evidence that any of the TRAPPIST-1 planets have an atmosphere,{{efn|Bourrier et al. (2017) interpreted UV absorption data from the Hubble Space Telescope as implying the outer TRAPPIST-1 planets still have an atmosphere.{{sfn|Harbach|Moschou|Garraffo|Drake|2021|p=3}}}}{{sfn|Deming|Knutson|2020|p=459}} but atmospheres could be detected in the future.{{sfn|Fortney|2018|p=17}} The outer planets are more likely to have atmospheres than the inner planets.{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=36}} Several studies have simulated how various atmospheric scenarios would look to observers, and the chemical processes underpinning these atmospheric compositions.{{sfn|Wunderlich|Scheucher|Godolt|Grenfell|2020|pp=26–27}} The visibility of an exoplanet and of its atmosphere scale with the inverse square of the radius of its host star.{{sfn|Fortney|2018|p=17}}
Detection of individual components of the atmospheres – in particular CO2, ozone, and water{{sfn|Zhang|Zhou|Rackham|Apai|2018|p=1}} – would also be possible, although different components would require different conditions and different numbers of transits.{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=33}} A contamination of the atmospheric signals through patterns in the stellar photosphere is an additional impediment to detection.{{sfn|Ducrot|Gillon|Delrez|Agol|2020|p=2}}
The existence of atmospheres around TRAPPIST-1's planets depends on the balance between the amount of atmosphere initially present, its rate of evaporation, and the rate at which it is built back up by meteorite impacts,{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=8}} incoming material from a protoplanetary disk,{{sfn|Kral|Davoult|Charnay|2020|p=770}} and outgassing and volcanic activity.{{sfn|Hori|Ogihara|2020|p=1}} Impact events may be particularly important in the outer planets because they can both add and remove volatiles; addition is likely dominant in the outermost planets where impact velocities are slower.{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=10}}{{sfn|Kral|Wyatt|Triaud|Marino|2018|p=2670}} While the properties of TRAPPIST-1 are unfavourable to the continued existence of atmospheres around its planets,{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=35}} the planets' formation conditions would give them large initial quantities of volatile materials,{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=36}} including oceans more than 100 times larger than Earth's.{{sfn|Lingam|Loeb|2019a|p=8}}
If the planets are tidally locked to TRAPPIST-1, surfaces that permanently face away from the star can cool sufficiently for any atmosphere to freeze out on the night side.{{sfn|Turbet|Bolmont|Leconte|Forget|2018|p=9}} This frozen-out atmosphere could be recycled through glacier-like flows to the day side with assistance from tidal or geothermal heating from below, or could be stirred by impact events. These processes could allow an atmosphere to persist.{{sfn|Turbet|Bolmont|Leconte|Forget|2018|p=10}} In a carbon dioxide (CO2) atmosphere, carbon-dioxide ice is denser than water ice, under which it tends to be buried. CO2-water compounds named clathrates{{efn|A clathrate is a chemical compound where one compound, e.g. carbon dioxide, is trapped within a cage-like assembly of molecules from another compound such as water.{{sfn|Turbet|Bolmont|Leconte|Forget|2018|p=14}}}} can form. Additional complications are a potential runaway feedback loop between melting ice and evaporation, and the greenhouse effect.{{sfn|Turbet|Bolmont|Leconte|Forget|2018|pp=14–15}}
Numerical modelling and observations constrain the properties of hypothetical atmospheres around TRAPPIST-1 planets:{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=36}}
- Theoretical calculations{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=23}} and observations have ruled out the possibility the TRAPPIST-1 planets have hydrogen-rich{{sfn|Kane|Arney|Byrne|Dalba|2021|p=17}}{{sfn|Gillon|Meadows|Agol|Burgasser|2020|p=14}} or helium-rich atmospheres.{{sfn|Gressier|Mori|Changeat|Edwards|2022|p=6}} Hydrogen-rich exospheres{{efn|The exosphere is the region of an atmosphere where density is so low that atoms or molecules no longer collide. It is formed by atmospheric escape and the presence of a hydrogen-rich exosphere implies the presence of water.{{sfn|dos Santos|Bourrier|Ehrenreich|Kameda|2019|p=1}}}} may be detectable{{sfn|dos Santos|Bourrier|Ehrenreich|Kameda|2019|p=11}} but have not been reliably detected,{{sfn|Gillon|Meadows|Agol|Burgasser|2020|p=15}} except perhaps for TRAPPIST-1b and 1c by Bourrier et al. (2017).{{sfn|Gressier|Mori|Changeat|Edwards|2022|p=2}}{{sfn|Harbach|Moschou|Garraffo|Drake|2021|p=3}}
- Water-dominated atmospheres, while suggested by some density estimates, are improbable for the planets because they are expected to be unstable under the conditions around TRAPPIST-1, especially early in the star's life.{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=24}} The spectral properties of the planets imply they do not have a cloud-free, water-rich atmosphere.{{sfn|Edwards|Changeat|Mori|Anisman|2020|p=11}}
- Oxygen-dominated atmospheres can form when radiation splits water into hydrogen and oxygen, and the hydrogen escapes due to its lighter mass. The existence of such an atmosphere and its mass depends on the initial water mass, on whether the oxygen is dragged out of the atmosphere by escaping hydrogen and of the state of the planet's surface; a partially molten surface could absorb sufficient quantities of oxygen to remove an atmosphere.{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|pp=24–26}}
- Atmospheres formed by ammonia and/or methane near TRAPPIST-1 would be destroyed by the star's radiation at a sufficient rate to quickly remove an atmosphere. The rate at which ammonia or methane are produced, possibly by organisms, would have to be considerably larger than that on Earth to sustain such an atmosphere. It is, however, possible the development of organic hazes from ammonia or methane photolysis could shield the remaining molecules from degradation caused by radiation.{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|pp=26–27}} Ducrot et al. (2020) interpreted observational data as implying methane-dominated atmospheres are unlikely around TRAPPIST-1 planets.{{sfn|Ducrot|Gillon|Delrez|Agol|2020|p=19}}
- Nitrogen-dominated atmospheres are particularly unstable with respect to atmospheric escape, especially on the innermost planets, although the presence of CO2 may slow evaporation.{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|pp=27–28}} Unless the TRAPPIST-1 planets initially contained far more nitrogen than Earth, they are unlikely to have retained such atmospheres.{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=37}}
- CO2-dominated atmospheres escape slowly because CO2 effectively radiates away energy and thus does not readily reach escape velocity; on a synchronously rotating planet, however, CO2 can freeze out on the night side, especially if there are no other gases in the atmosphere. The decomposition of CO2 caused by radiation could yield substantial amounts of oxygen, carbon monoxide (CO),{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=28}} and ozone.{{sfn|Wunderlich|Scheucher|Godolt|Grenfell|2020|p=2}}
Theoretical modelling by Krissansen-Totton and Fortney (2022) suggests the inner planets most likely have oxygen-and-CO2-rich atmospheres, if any.{{sfn|Krissansen-Totton|Fortney|2022|p=14}} If the planets have an atmosphere, the amount of precipitation, its form and location would be determined by the presence and position of mountains and oceans, and the rotation period.{{sfn|Stevenson|2019|pp=330–332}} Planets in the habitable zone are expected to have an atmospheric circulation regime resembling Earth's tropical regions with largely uniform temperatures.{{sfn|Zhang|2020|p=57}} Whether greenhouse gases can accumulate on the outer TRAPPIST-1 planets in sufficient quantities to warm them to the melting point of water is controversial; on a synchronously rotating planet, CO2 could freeze and precipitate on the night side, and ammonia and methane would be destroyed by XUV radiation from TRAPPIST-1.{{sfn|Airapetian|Barnes|Cohen|Collinson|2020|p=159}} Carbon dioxide freezing-out can occur only on the outermost planets unless special conditions are met, and other volatiles do not freeze out.{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=6}}
= Stability =
The emission of extreme ultraviolet (XUV) radiation by a star has an important influence on the stability of its planets' atmospheres, their composition and the habitability of their surfaces.{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=6}} It can cause the ongoing removal of atmospheres from planets.{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=8}} XUV radiation-induced atmospheric escape has been observed on gas giants.{{sfn|Wheatley|Louden|Bourrier|Ehrenreich|2017|p=74}} M dwarfs emit large amounts of XUV radiation;{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=6}} TRAPPIST-1 and the Sun emit about the same amount of XUV radiation{{efn|Different sources estimate that TRAPPIST-1 emits as much as the Sun at solar minimum,{{sfn|Harbach|Moschou|Garraffo|Drake|2021|p=3}} the same amount{{sfn|Ducrot|Gillon|Delrez|Agol|2020|p=2}} or more than the Sun.{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|pp=7–8}}}} and because TRAPPIST-1's planets are much closer to the star than the Sun's, they receive much more intense irradiation.{{sfn|Fabbian|Simoniello|Collet|Criscuoli|2017|p=770}} TRAPPIST-1 has been emitting radiation for much longer than the Sun.{{sfn|Acton|Slavney|Arvidson|Gaddis|2017|p=33}} The process of atmospheric escape has been modelled mainly in the context of hydrogen-rich atmospheres and little quantitative research has been done on those of other compositions such as water and CO2.{{sfn|Gillon|Meadows|Agol|Burgasser|2020|p=14}}
TRAPPIST-1 has moderate to high stellar activity{{efn|Stellar activity is the occurrence of luminosity changes, mostly in the X-ray bands, caused by a star's magnetic field.{{sfn|Gargaud|Amils|Quintanilla|Cleaves|2011|loc=Activity (Magnetic)}}}},{{sfn|Gillon|Jehin|Lederer|Delrez|2016|p=221}} and this may be an additional difficulty for the persistence of atmospheres and water on the planets:{{sfn|Marov|Shevchenko|2020|p=865}}
- Dwarfs of the spectral class M have intense flares;{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=6}} TRAPPIST-1 averages about 0.38 flares per day{{sfn|Airapetian|Barnes|Cohen|Collinson|2020|p=159}} and four to six superflares{{efn|Flares with an energy of over {{convert|1e34|erg|J}}.{{sfn|Glazier|Howard|Corbett|Law|2020|p=1}}}} per year.{{sfn|Glazier|Howard|Corbett|Law|2020|p=9}} Such flares would have only small impacts on atmospheric temperatures but would substantially affect the stability and chemistry of atmospheres.{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=8}} According to Samara, Patsourakos and Georgoulis (2021), the TRAPPIST-1 planets are unlikely to be able to retain atmospheres against coronal mass ejections.{{sfn|Samara|Patsourakos|Georgoulis|2021|p=1}}
- The stellar wind from TRAPPIST-1 may have a pressure 1,000 times larger than that of the Sun at Earth's orbit, which could destabilise atmospheres of the star's planets{{sfn|Linsky|2019|p=191}} up to planet f. The pressure would push the wind deep into the atmospheres,{{sfn|Linsky|2019|pp=198–199}} facilitating loss of water and evaporation of the atmospheres.{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=8}}{{sfn|Turbet|Bolmont|Leconte|Forget|2018|p=2}} Stellar wind-driven escape in the Solar System is largely independent from planetary properties such as mass;{{sfn|Dong|Jin|Lingam|Airapetian|2018|p=262}} stellar wind from TRAPPIST-1 could remove the atmospheres of its planets on a timescale of 100 million to 10 billion years.{{sfn|Dong|Jin|Lingam|Airapetian|2018|p=264}}
- Ohmic heating{{efn|Ohmic heating takes place when electrical currents excited by the stellar wind flow through parts of the atmosphere, heating it.{{sfn|Cohen|Glocer|Garraffo|Drake|2018|p=1}}}} of the atmosphere of TRAPPIST-1e, f, and g amounts to 5–15 times the heating from XUV radiation; if the heat is effectively absorbed, it could destabilise the atmospheres.{{sfn|Linsky|2019|p=189}}
The star's history also influences the atmospheres of its planets.{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|pp=3,5}} Immediately after its formation, TRAPPIST-1 would have been in a pre-main-sequence state, which may have lasted between hundreds of millions{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=6}} and two billion years.{{sfn|Ducrot|Gillon|Delrez|Agol|2020|p=2}} While in this state, it would have been considerably brighter than it is today and the star's intense irradiation would have impacted the atmospheres of surrounding planets, vaporising all common volatiles such as ammonia, CO2, sulfur dioxide, and water.{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=5}} Thus, all of the system's planets would have been heated to a runaway greenhouse{{efn|In a runaway greenhouse, all water on a planet is in the form of vapour.{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=5}}}} for at least part of their existence.{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=6}} The XUV radiation would have been even higher during the pre-main-sequence stage.{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=8}}
Possible life
Life may be possible in the TRAPPIST-1 system, and some of the star's planets are considered promising targets for its detection.{{sfn|Marov|Shevchenko|2020|p=865}} On the basis of atmospheric stability, TRAPPIST-1e is theoretically the planet most likely to harbour life; the probability that it does is considerably less than that of Earth. There are an array of factors at play:{{sfn|Lingam|Loeb|2018a|p=122}}{{sfn|Pidhorodetska|Fauchez|Villanueva|Domagal-Goldman|2020|p=2}}
- Due to the multiple interacting planets, TRAPPIST-1 planets are expected to have intense tides.{{sfn|Lingam|Loeb|2018b|p=973}} If oceans are present, the tides could: lead to alternate flooding and drying of coastal landscapes triggering chemical reactions conducive to the development of life;{{sfn|Lingam|Loeb|2018b|pp=969–970}} favour the evolution of biological rhythms such as the day-night cycle that otherwise would not develop in a synchronously rotating planet;{{sfn|Lingam|Loeb|2018b|p=971}} mix oceans, thus supplying and redistributing nutrients;{{sfn|Lingam|Loeb|2018b|p=972}} and stimulate periodic expansions of marine organisms similar to red tides on Earth.{{sfn|Lingam|Loeb|2018b|p=975}}
- TRAPPIST-1 may not produce sufficient quantities of radiation for photosynthesis to support an Earth-like biosphere.{{sfn|Lingam|Loeb|2019a|p=11}}{{sfn|Covone|Ienco|Cacciapuoti|Inno|2021|p=3332}}{{sfn|Lingam|Loeb|2021|p=347}} Mullan and Bais (2018) speculated that radiation from flares may increase the photosynthetic potential of TRAPPIST-1,{{sfn|Mullan|Bais|2018|p=11}} but according to Lingam and Loeb (2019), the potential would still be small.{{sfn|Lingam|Loeb|2019b|p=5926}}
- Due to the proximity of the TRAPPIST-1 planets, it is possible rock-encased microorganisms ripped from one planet may arrive at another planet while still viable inside the rock, allowing life to spread between the planets if it originates on one.{{sfn|Goldsmith|2018|p=124}}
- Too much UV radiation from a star can sterilise the surface of a planet{{sfn|Barth|Carone|Barnes|Noack|2021|p=1326}}{{sfn|O'Malley-James|Kaltenegger|2017|p=26}} but too little may not allow the formation of chemical compounds that give rise to life.{{sfn|Harbach|Moschou|Garraffo|Drake|2021|p=3}}{{sfn|Ranjan|Wordsworth|Sasselov|2017|pp=2,9}} Inadequate production of hydroxyl radicals by low stellar-UV emission may allow gases such as carbon monoxide that are toxic to higher life to accumulate in the planets' atmospheres.{{sfn|Schwieterman|Reinhard|Olson|Harman|2019|p=5}} The possibilities range from UV fluxes from TRAPPIST-1 being unlikely to be much larger than these of early Earth – even in the event that TRAPPIST-1's emissions of UV radiation are high{{sfn|O'Malley-James|Kaltenegger|2017|p=30}} – to being sufficient to sterilise the planets if they do not have protective atmospheres.{{sfn|Valio|Estrela|Cabral|Grangeiro|2018|p=179}} {{As of|2020}} it is unclear which effect would predominate around TRAPPIST-1,{{sfn|Ducrot|Gillon|Delrez|Agol|2020|p=2}} although observations with the Kepler Space Telescope and the Evryscope telescopes indicate the UV flux may be insufficient for both sterilisation and the formation of life.{{sfn|Glazier|Howard|Corbett|Law|2020|p=9}}
- The outer planets in the TRAPPIST-1 system could host subsurface oceans similar to those of Enceladus and Europa in the Solar System.{{sfn|Lingam|Loeb|2019c|p=112}} Chemolithotrophy, the growth of organisms based on non-organic reduced compounds,{{sfn|Gargaud|Amils|Quintanilla|Cleaves|2011|loc=Chemolithotroph}} could sustain life in such oceans.{{sfn|Kendall|Byrne|2020|p=1}} Very deep oceans may be inimical to the development of life.{{sfn|Barth|Carone|Barnes|Noack|2021|p=1344}}
- Some planets of the TRAPPIST-1 system may have enough water to completely submerge their surfaces.{{sfn|Guimond|Rudge|Shorttle|2022|pp=16–17}} If so, this would have important effects on the possibility of life developing on the planets, and on their climates.{{sfn|Guimond|Rudge|Shorttle|2022|p=1}}
In 2017, a search for technosignatures that would indicate the existence of past or present technology in the TRAPPIST-1 system found only signals coming from Earth.{{sfn|Pinchuk|Margot|Greenberg|Ayalde|2019|p=1}} In less than two millennia, Earth will be transiting in front of the Sun from the viewpoint of TRAPPIST-1, making the detection of life on Earth from TRAPPIST-1 possible.{{sfn|Kaltenegger|Faherty|2021|p=505}}
Research history and reception
File:Trappist1-final-hour-long-cadence.gif image of TRAPPIST-1|alt=GIF image of a pixellated star]]
TRAPPIST-1 was discovered in 1999{{efn|The star corresponding to TRAPPIST-1 appears in sample C{{sfn|Gizis|Monet|Reid|Kirkpatrick|2000|p=1088}}{{sfn|Gillon|Jehin|Lederer|Delrez|2016|p=225}} of the surveyed stars, which was obtained in June 1999. The publication of the discovery took place in 2000.{{sfn|Gizis|Monet|Reid|Kirkpatrick|2000|p=1086}}}} by astronomer John Gizis and colleagues{{sfn|Gizis|Monet|Reid|Kirkpatrick|2000|p=1088}} during a survey of Two Micron All-Sky Survey data for the identification of close-by ultra-cool dwarf stars.{{sfn|Gillon|Jehin|Lederer|Delrez|2016|p=225}}{{sfn|Gizis|Monet|Reid|Kirkpatrick|2000|p=1085}} The name is a reference to the TRansiting Planets and PlanetesImals Small Telescope (TRAPPIST){{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=2}}{{efn|TRAPPIST is a {{convert|60|cm|in|abbr=out|adj=on}} telescope{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=2}} intended to be a prototype for the "Search for habitable Planets EClipsing ULtra-cOOl Stars" project (SPECULOOS), which aims to identify planets around close, cold stars.{{sfn|Barstow|Irwin|2016|p=95}}{{sfn|Gillon|Jehin|Delrez|Magain|2013|p=1}} TRAPPIST is used to find exoplanets, and is preferentially employed on stars colder than {{convert|3000|K}}.{{sfn|Shields|Ballard|Johnson|2016|p=7}} }} project that discovered the first two exoplanets around the star.{{sfn|Goldsmith|2018|p=118}}
TRAPPIST's planetary system was discovered by a team led by Michaël Gillon, a Belgian astronomer{{sfn|Rinaldi|Núñez Ferrer|2017|p=1}} at the University of Liege,{{sfn|Angosto|Zaragoza|Melón|2017|p=85}} in 2016{{sfn|Angosto|Zaragoza|Melón|2017|p=86}} during observations made at La Silla Observatory, Chile,{{sfn|Marov|Shevchenko|2020|p=865}}{{sfn|Linsky|2019|p=105}} using the TRAPPIST telescope; the system's discovery was based on anomalies in the light curves{{efn|When a planet moves in front of its star, it absorbs part of the star's radiation, which may be observed via telescopes.{{sfn|Cisewski|2017|p=23}}}} measured by the telescope in 2015. These anomalies were initially interpreted as indicating the existence of three planets – TRAPPIST-1b, TRAPPIST-1c and a third planet. In 2016, separate discoveries revealed this third planet was in fact multiple planets:{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=2}} the Spitzer Space Telescope; the ground-based TRAPPIST and TRAPPIST-North in Oukaïmeden Observatory, Morocco; the South African Astronomical Observatory; and the Liverpool Telescopes and William Herschel Telescopes in Spain.{{sfn|Gillon|Triaud|Demory|Jehin|2017|p=461}}
The observations of TRAPPIST-1 are considered among the most important research findings of the Spitzer Space Telescope.{{sfn|Ducrot|2021|p=4}} Observations by the Himalayan Chandra Telescope, the United Kingdom Infrared Telescope, and the Very Large Telescope complemented the findings by the TRAPPIST telescope.{{sfn|Gillon|Jehin|Lederer|Delrez|2016|p=221}} Since then, research has confirmed the existence of at least seven planets in the system,{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=3}} and their orbits have been constrained by measurements from the Spitzer and Kepler telescopes.{{sfn|Agol|Dorn|Grimm|Turbet|2021|p=2}} Some news reports incorrectly attributed the discovery of the TRAPPIST-1 planets to NASA; the TRAPPIST project that led to their discovery received funding from both NASA and the European Research Council of the European Union (EU).{{sfn|Rinaldi|Núñez Ferrer|2017|pp=1–2}}
= Public reaction and cultural impact =
File:TRAPPIST-1e Const CMYK Print.png
The discovery of the TRAPPIST-1 planets drew widespread attention in major world newspapers, social media, streaming television and websites.{{sfn|Short|Stapelfeldt|2017|pp=1, 28}}{{sfn|Benaglia|Muriel|Gamen|Lares|2017|p=186}} {{As of|2017}}, the discovery of TRAPPIST-1 led to the largest single-day web traffic to the NASA website.{{sfn|Short|Stapelfeldt|2017|p=28}} NASA started a public campaign on Twitter to find names for the planets, which drew numerous responses of varying seriousness, although the names of the planets will be decided by the International Astronomical Union.{{sfn|Physics World|2017|p=1}} The dynamics of the TRAPPIST-1 planetary system have been represented as music, such as Tim Pyle's Trappist Transits,{{sfn|Riber|2018|p=1}} in Isolation's single Trappist-1 (A Space Anthem){{sfn|Howell|2020|p=3-34}} and Leah Asher's piano work TRAPPIST-1.{{sfn|McKay|2021|p=14}} The alleged discovery of an SOS signal from TRAPPIST-1 was an April Fools prank by researchers at the High Energy Stereoscopic System in Namibia.{{sfn|Janjic|2017|p=57}} In 2018, Aldo Spadon created a giclée digital artwork named "TRAPPIST-1 Planetary System as seen from Space".{{sfn|Kanas|2019|p=488}} A website was dedicated to the TRAPPIST-1 system.{{sfn|Gibb|2022|p=2}}
Exoplanets are often featured in science-fiction works; books, comics and video games have featured the TRAPPIST-1 system, the earliest being The Terminator, a short story by Swiss author Laurence Suhner published in the academic journal that announced the system's discovery.{{sfn|Gillon|2020a|p=35}} At least one conference was organised to recognise works of fiction featuring TRAPPIST-1.{{sfn|Gillon|2020b|p=50}} The planets have been used as the basis of science education competitions{{sfn|Sein|Duncan|Zhong|Koock|2021|p=3}} and school projects.{{sfn|Hughes|2022|p=148}}{{sfn|Lane|Gadbury|Ginger|Yi|2022|p=5}} Websites offering TRAPPIST-1-like planets as settings of virtual reality simulations exist,{{sfn|Paladini|2019|pp=239,254}} such as the "Exoplanet Travel Bureau"{{sfn|Exoplanet Travel Bureau|2021}} and the "Exoplanets Excursion" – both by NASA.{{sfn|AAS|2020|p=309}} Scientific accuracy has been a point of discussion for such cultural depictions of TRAPPIST-1 planets.{{sfn|Fidrick|Yeung|Niemack|Dixon|2020|pp=1–2}}
= Scientific importance =
TRAPPIST-1 has drawn intense scientific interest.{{sfn|Deming|Knutson|2020|p=459}} Its planets are the most easily studied exoplanets within their star's habitable zone owing to their relative closeness, the small size of their host star, and because from Earth's perspective they frequently pass in front of their host star.{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=3}} Future observations with space-based observatories and ground-based facilities may allow insights into their properties such as density, atmospheres, and biosignatures.{{efn|Biosignatures are properties of a planet that can be detected from far away and which suggest the existence of life, such as atmospheric gases that are produced by biological processes.{{sfn|Grenfell|2017|p=2}}}} TRAPPIST-1 planets{{sfn|Madhusudhan|2019|p=652}}{{sfn|Turbet|Bolmont|Bourrier|Demory|2020|p=31}} are considered an important observation target for the James Webb Space Telescope (JWST){{efn|It is possible the JWST may not have time to reliably detect certain biosignatures such as methane and ozone.{{sfn|Chiao|2019|p=880}}}}{{sfn|Deming|Knutson|2020|p=459}} and other telescopes under construction.{{sfn|Kral|Wyatt|Triaud|Marino|2018|p=2649}} Together with the discovery of Proxima Centauri b, the discovery of the TRAPPIST-1 planets and the fact that three of the planets are within the habitable zone has led to an increase in studies on planetary habitability.{{sfn|Lingam|Loeb|2018a|p=116}} The planets are considered prototypical for the research on habitability of M dwarfs.{{sfn|Madhusudhan|2020|p=I-7}} The star has been the subject of detailed studies{{sfn|Linsky|2019|p=198}} of its various aspects,{{sfn|Delrez|Murray|Pozuelos|Narita|2022|p=32}} including the possible effects of vegetation on its planets, the possibility of the detection of oceans on its planets using starlight reflected off their surfaces,{{sfn|Kopparla|Natraj|Crisp|Bott|2018|p=1}} discussions of possible efforts to terraform its planets,{{sfn|Sleator|Smith|2017|pp=1–2}} and difficulties inhabitants of the planets would encounter with interstellar travel{{sfn|Lingam|Loeb|2018c}} and with their discovering the law of gravitation.{{sfn|Wang|2022|p=10}}
The role EU funding played in the discovery of TRAPPIST-1 has been cited as an example of the importance of EU projects,{{sfn|Rinaldi|Núñez Ferrer|2017|pp=1–2}} and the involvement of a Moroccan observatory as an indication of the Arab world's role in science. The original discoverers were affiliated with universities spanning Africa, Europe, and North America,{{sfn|Determann|2019|pp=168–169}} and the discovery of TRAPPIST-1 is considered to be an example of the importance of co-operation between observatories.{{sfn|Gutiérrez|Arnold|Copley|Copperwheat|2019|p=41}} It is also one of the major astronomical discoveries from Chilean observatories.{{sfn|Guridi|Pertuze|Pfotenhauer|2020|p=5}}
= Exploration =
TRAPPIST-1 is too distant from Earth to be reached by humans with current or expected technology.{{sfn|Euroschool|2018|p=10}} Spacecraft mission designs using present-day rockets and gravity assists would need hundreds of millennia to reach TRAPPIST-1; even a theoretical interstellar probe travelling at the speed of light would need decades to reach the star. The speculative Breakthrough Starshot proposal for sending small, laser-accelerated, uncrewed probes would require around two centuries to reach TRAPPIST-1.{{sfn|Srinivas|2017|p=19}}
See also
- HD 10180, a star with at least six known planets, and three more exoplanet candidates
- Tabby's Star, another star with notable transit data
- LHS 1140, another star with a planetary system suitable for atmospheric studies
- LP 890-9, the second-coolest star found to host a planetary system, after TRAPPIST-1.
- List of potentially habitable exoplanets
Notes
{{notelist}}
References
{{Reflist|25em}}
= Sources =
{{sfn whitelist |CITEREFBrown2021}}
{{refbegin|3}}
- {{cite conference|book-title=Abstracts of the 235th AAS Meeting |title=Special Session 001 |url=https://assets.pubpub.org/rynkboj6/71582749259388.pdf |publisher=American Astronomical Society |date=January 2020 |ref={{harvid|AAS|2020}}|location=Honolulu, Hawaii}}
- {{cite journal|last1=Acton|first1=C.|last2=Slavney|first2=S.|last3=Arvidson|first3=R. E.|last4=Gaddis|first4=L. R.|display-authors=4|last5=Gordon|first5=M.|last6=Lavoie|first6=S.|year=2017|title=The planetary data system|journal=Lunar Planet. Inf. Bull.|volume=150|pages=2–11|url=https://www.lpi.usra.edu/publications/newsletters/lpib/lpib150.pdf}}
- {{cite journal |last1=Agol |first1=Eric |last2=Dorn |first2=Caroline |last3=Grimm |first3=Simon L. |last4=Turbet |first4=Martin |display-authors=4|last5=Ducrot |first5=Elsa |last6=Delrez |first6=Laetitia |last7=Gillon |first7=Michaël |last8=Demory |first8=Brice-Olivier |last9=Burdanov |first9=Artem |last10=Barkaoui |first10=Khalid |last11=Benkhaldoun |first11=Zouhair |last12=Bolmont |first12=Emeline |last13=Burgasser |first13=Adam |last14=Carey |first14=Sean |last15=de Wit |first15=Julien |last16=Fabrycky |first16=Daniel |last17=Foreman-Mackey |first17=Daniel |last18=Haldemann |first18=Jonas |last19=Hernandez |first19=David M. |last20=Ingalls |first20=James |last21=Jehin |first21=Emmanuel |last22=Langford |first22=Zachary |last23=Leconte |first23=Jérémy |last24=Lederer |first24=Susan M. |last25=Luger |first25=Rodrigo |last26=Malhotra |first26=Renu |last27=Meadows |first27=Victoria S. |last28=Morris |first28=Brett M. |last29=Pozuelos |first29=Francisco J. |last30=Queloz |first30=Didier |last31=Raymond |first31=Sean N. |last32=Selsis |first32=Franck |last33=Sestovic |first33=Marko |last34=Triaud |first34=Amaury H. M. J. |last35=Grootel |first35=Valerie Van |title=Refining the Transit-timing and Photometric Analysis of TRAPPIST-1: Masses, Radii, Densities, Dynamics, and Ephemerides |journal=The Planetary Science Journal |date=1 February 2021 |volume=2 |issue=1 |pages=1 |doi=10.3847/psj/abd022 |arxiv=2010.01074 |bibcode=2021PSJ.....2....1A |s2cid=222125312 |language=en}}
- {{cite journal |last1=Airapetian |first1=V. S. |last2=Barnes |first2=R. |last3=Cohen |first3=O. |last4=Collinson |first4=G. A. |display-authors=4|last5=Danchi |first5=W. C. |last6=Dong |first6=C. F. |last7=Del Genio |first7=A. D. |last8=France |first8=K. |last9=Garcia-Sage |first9=K. |last10=Glocer |first10=A. |last11=Gopalswamy |first11=N. |last12=Grenfell |first12=J. L. |last13=Gronoff |first13=G. |last14=Güdel |first14=M. |last15=Herbst |first15=K. |last16=Henning |first16=W. G. |last17=Jackman |first17=C. H. |last18=Jin |first18=M. |last19=Johnstone |first19=C. P. |last20=Kaltenegger |first20=L. |last21=Kay |first21=C. D. |last22=Kobayashi |first22=K. |last23=Kuang |first23=W. |last24=Li |first24=G. |last25=Lynch |first25=B. J. |last26=Lüftinger |first26=T. |last27=Luhmann |first27=J. G. |last28=Maehara |first28=H. |last29=Mlynczak |first29=M. G. |last30=Notsu |first30=Y. |last31=Osten |first31=R. A. |last32=Ramirez |first32=R. M. |last33=Rugheimer |first33=S. |last34=Scheucher |first34=M. |last35=Schlieder |first35=J. E. |last36=Shibata |first36=K. |last37=Sousa-Silva |first37=C. |last38=Stamenković |first38=V. |last39=Strangeway |first39=R. J. |last40=Usmanov |first40=A. V. |last41=Vergados |first41=P. |last42=Verkhoglyadova |first42=O. P. |last43=Vidotto |first43=A. A. |last44=Voytek |first44=M. |last45=Way |first45=M. J. |last46=Zank |first46=G. P. |last47=Yamashiki |first47=Y. |title=Impact of space weather on climate and habitability of terrestrial-type exoplanets |journal=International Journal of Astrobiology |date=April 2020 |volume=19 |issue=2 |pages=136–194 |doi=10.1017/S1473550419000132|arxiv=1905.05093 |bibcode=2020IJAsB..19..136A |s2cid=152282234 }}
- {{cite journal |last1=Alberti |first1=Tommaso |last2=Carbone |first2=Vincenzo |last3=Lepreti |first3=Fabio |last4=Vecchio |first4=Antonio |title=Comparative Climates of the Trappist-1 Planetary System: Results from a Simple Climate-vegetation Model |journal=The Astrophysical Journal |date=18 July 2017 |volume=844 |issue=1 |pages=19 |doi=10.3847/1538-4357/aa78a2 |arxiv=1706.06005 |bibcode=2017ApJ...844...19A |s2cid=118972556 |language=en}}
- {{cite conference |last1=Allen |first1=John |last2=Becker |first2=Christopher |last3=Fuse |first3=Christopher |title=Stability of Moons in the Trappist-1 System |journal=American Astronomical Society Meeting Abstracts #231 |date=1 January 2018 |volume=231 |pages=148.21 |bibcode=2018AAS...23114821A |conference=American Astronomical Society, AAS Meeting #231|location=National Harbor, Maryland}}
- {{cite report|last1=Angosto|first1=María Cascales|first2=Federico Mayor|last2=Zaragoza|first3=José Miguel Ortiz|last3=Melón|title=Premios Nobel 2016|publisher=Centro de Estudios Ramón Areces|year=2017|url=https://www.fundacionareces.es/recursos/doc/portal/2019/04/23/premios-nobel-2019.pdf|language=es}}
- {{cite journal |last1=Aschwanden |first1=Markus J. |last2=Scholkmann |first2=Felix |last3=Béthune |first3=William |last4=Schmutz |first4=Werner |display-authors=4|last5=Abramenko |first5=Valentina |last6=Cheung |first6=Mark C. M. |last7=Müller |first7=Daniel |last8=Benz |first8=Arnold |last9=Chernov |first9=Guennadi |last10=Kritsuk |first10=Alexei G. |last11=Scargle |first11=Jeffrey D. |last12=Melatos |first12=Andrew |last13=Wagoner |first13=Robert V. |last14=Trimble |first14=Virginia |last15=Green |first15=William H. |title=Order out of Randomness: Self-Organization Processes in Astrophysics |journal=Space Science Reviews |date=March 2018 |volume=214 |issue=2 |pages=55 |doi=10.1007/s11214-018-0489-2|arxiv=1708.03394 |bibcode=2018SSRv..214...55A |s2cid=119064521 }}
- {{cite book |last1=Awiphan |first1=Supachai |title=Exomoons to Galactic Structure |series=Springer Theses |date=2018 |doi=10.1007/978-3-319-90957-8 |isbn=978-3-319-90956-1 |language=en-gb}}
- {{cite journal |title=Precision radial velocities of 15 M5-M9 dwarfs |journal=Monthly Notices of the Royal Astronomical Society |first1=J. R. |last1=Barnes |first2=J. S. |last2=Jenkins |first3=H. R. A. |last3=Jones |first4= S. V. |last4= Jeffers|s2cid=16005221 |display-authors=etal |volume=439 |issue=3 |pages=3094–3113 |date=April 2014 |doi=10.1093/mnras/stu172 |bibcode=2014MNRAS.439.3094B |arxiv=1401.5350}}
- {{cite journal |last1=Barr |first1=Amy C. |last2=Dobos |first2=Vera |last3=Kiss |first3=László L. |title=Interior structures and tidal heating in the TRAPPIST-1 planets |journal=Astronomy & Astrophysics |date=1 May 2018 |volume=613 |pages=A37 |doi=10.1051/0004-6361/201731992 |arxiv=1712.05641 |bibcode=2018A&A...613A..37B |s2cid=119516532 |language=en |issn=0004-6361}}
- {{cite journal |last1=Barstow |first1=J. K. |last2=Irwin |first2=P. G. J. |title=Habitable worlds with JWST: transit spectroscopy of the TRAPPIST-1 system? |journal=Monthly Notices of the Royal Astronomical Society: Letters |date=1 September 2016 |volume=461 |issue=1 |pages=L92–L96 |arxiv=1605.07352 |bibcode=2016MNRAS.461L..92B |doi=10.1093/mnrasl/slw109 |s2cid=17058804 }}
- {{cite journal |last1=Barth |first1=Patrick |last2=Carone |first2=Ludmila |last3=Barnes |first3=Rory |last4=Noack |first4=Lena |display-authors=4|last5=Mollière |first5=Paul |last6=Henning |first6=Thomas |title=Magma Ocean Evolution of the TRAPPIST-1 Planets |journal=Astrobiology |date=1 November 2021 |volume=21 |issue=11 |pages=1325–1349 |doi=10.1089/ast.2020.2277 |pmid=34314604 |arxiv=2008.09599 |bibcode=2021AsBio..21.1325B |s2cid=221246323 |issn=1531-1074}}
- {{cite journal |last1=Bean |first1=Jacob L. |last2=Raymond |first2=Sean N. |last3=Owen |first3=James E. |title=The Nature and Origins of Sub-Neptune Size Planets |journal=Journal of Geophysical Research: Planets |date=2021 |volume=126 |issue=1 |pages=e2020JE006639 |doi=10.1029/2020JE006639 |pmid=33680689 |pmc=7900964 |arxiv=2010.11867 |bibcode=2021JGRE..12606639B |language=en |issn=2169-9100}}
- {{cite report|last1=Benaglia|first1=P.|last2=Muriel|first2=H.|last3=Gamen|first3=R.|last4=Lares|first4=M.|title=Comparacion de los datos de areas de manchas solares de los telescopios de la red SOON ("Solar Optical Observing Network")|year=2017|bibcode=2017BAAA...59..148L|language=es}}
- {{cite journal |last1=Bolmont |first1=E. |last2=Selsis |first2=F. |last3=Owen |first3=J. E. |last4=Ribas |first4=I. |display-authors=4|last5=Raymond |first5=S. N. |last6=Leconte |first6=J. |last7=Gillon |first7=M. |title=Water loss from terrestrial planets orbiting ultracool dwarfs: implications for the planets of TRAPPIST-1 |journal=Monthly Notices of the Royal Astronomical Society |date=21 January 2017 |volume=464 |issue=3 |pages=3728–3741 |arxiv=1605.00616 |bibcode=2017MNRAS.464.3728B |doi=10.1093/mnras/stw2578 |s2cid=53687987 }}
- {{cite journal |last1=Bourrier |first1=V. |last2=Wit |first2=J. de |last3=Bolmont |first3=E. |last4=Stamenković |first4=V. |display-authors=4|last5=Wheatley |first5=P. J. |last6=Burgasser |first6=A. J |last7=Delrez |first7=L. |last8=Demory |first8=B.-O. |last9=Ehrenreich |first9=D. |last10=Gillon |first10=M. |last11=Jehin |first11=E. |last12=Leconte |first12=J. |last13=Lederer |first13=S. M. |last14=Lewis |first14=N. |last15=Triaud |first15=A. H. M. J. |last16=Grootel |first16=V. Van |title=Temporal Evolution of the High-energy Irradiation and Water Content of TRAPPIST-1 Exoplanets |journal=The Astronomical Journal |date=31 August 2017 |volume=154 |issue=3 |pages=121 |doi=10.3847/1538-3881/aa859c |arxiv=1708.09484 |bibcode=2017AJ....154..121B |hdl=1721.1/112267 |s2cid=44398519 |language=en}}
- {{cite journal |last1=Brasser |first1=R |last2=Pichierri |first2=G |last3=Dobos |first3=V |last4=Barr |first4=A C |title=Long-term tidal evolution of the TRAPPIST-1 system |journal=Monthly Notices of the Royal Astronomical Society |date=29 July 2022 |volume=515 |issue=2 |pages=2373–2385 |doi=10.1093/mnras/stac1907 |url=https://academic.oup.com/mnras/article-abstract/515/2/2373/6639872}}
- {{Cite Gaia EDR3|2635476908753563008|access-date=6 March 2023}}
- {{cite journal |last1=Burgasser |first1=Adam J. |last2=Mamajek |first2=Eric E. |title=On the Age of the TRAPPIST-1 System |journal=The Astrophysical Journal |date=17 August 2017 |volume=845 |issue=2 |pages=110 |doi=10.3847/1538-4357/aa7fea |arxiv=1706.02018 |bibcode=2017ApJ...845..110B |s2cid=119464994 |language=en}}
- {{cite journal |last1=Carone |first1=L. |last2=Keppens |first2=R. |last3=Decin |first3=L. |last4=Henning |first4=Th. |title=Stratosphere circulation on tidally locked ExoEarths |journal=Monthly Notices of the Royal Astronomical Society |date=1 February 2018 |volume=473 |issue=4 |pages=4672–4685 |arxiv=1711.11446 |bibcode=2017MNRAS.473.4672C |doi=10.1093/mnras/stx2732 |s2cid=119049536 }}
- {{cite journal |last1=Chao |first1=Keng-Hsien |last2=deGraffenried |first2=Rebecca |last3=Lach |first3=Mackenzie |last4=Nelson |first4=William |display-authors=4|last5=Truax |first5=Kelly |last6=Gaidos |first6=Eric |title=Lava worlds: From early earth to exoplanets |journal=Geochemistry |date=1 May 2021 |volume=81 |issue=2 |pages=125735 |doi=10.1016/j.chemer.2020.125735 |arxiv=2012.07337 |bibcode=2021ChEG...81l5735C |s2cid=229153893 |language=en |issn=0009-2819}}
- {{cite journal |last1=Checlair |first1=Jade |last2=Menou |first2=Kristen |last3=Abbot |first3=Dorian S. |title=No Snowball on Habitable Tidally Locked Planets |journal=The Astrophysical Journal |date=18 August 2017 |volume=845 |issue=2 |pages=132 |doi=10.3847/1538-4357/aa80e1 |arxiv=1705.08904 |bibcode=2017ApJ...845..132C |s2cid=13719958 |issn=1538-4357}}
- {{cite journal |last1=Chiao |first1=May |title=An infrared selfie |journal=Nature Astronomy |date=October 2019 |volume=3 |issue=10 |pages=880 |doi=10.1038/s41550-019-0919-4 |bibcode=2019NatAs...3..880C |s2cid=204718432 |language=en |issn=2397-3366}}
- {{cite journal |last1=Childs |first1=Anna C. |last2=Martin |first2=Rebecca G. |last3=Livio |first3=Mario |title=Life on Exoplanets in the Habitable Zone of M Dwarfs? |journal=The Astrophysical Journal Letters |date=1 October 2022 |volume=937 |issue=2 |pages=L41 |doi=10.3847/2041-8213/ac9052 |arxiv=2209.02860 |bibcode=2022ApJ...937L..41C |s2cid=252110686 |url=https://iopscience.iop.org/article/10.3847/2041-8213/ac9052/meta}}
- {{cite journal |last1=Cisewski |first1=Jessi |title=In search of Earth analogues |journal=Significance |date=2017 |volume=14 |issue=2 |pages=22–25 |doi=10.1111/j.1740-9713.2017.01017.x |s2cid=157345539 |language=en |issn=1740-9713}}
- {{Cite journal|last1=Cloutier|first1=Ryan|last2=Triaud|first2=Amaury H. M. J.|date=11 November 2016|title=Prospects for detecting the Rossiter–McLaughlin effect of Earth-like planets: the test case of TRAPPIST-1b and c|journal=Monthly Notices of the Royal Astronomical Society|language=en|volume=462|issue=4|pages=4018–4027|arxiv=1608.01334 |bibcode=2016MNRAS.462.4018C |doi=10.1093/mnras/stw1953 |s2cid=16147394 |issn=0035-8711}}
- {{cite journal |last1=Cohen |first1=Ofer |last2=Glocer |first2=Alex |last3=Garraffo |first3=Cecilia |last4=Drake |first4=Jeremy J. |display-authors=4|last5=Bell |first5=Jared M. |title=Energy Dissipation in the Upper Atmospheres of TRAPPIST-1 Planets |journal=The Astrophysical Journal |date=23 March 2018 |volume=856 |issue=1 |pages=L11 |doi=10.3847/2041-8213/aab5b5 |pmid=32944211 |pmc=7493050 |arxiv=1803.05089 |bibcode=2018ApJ...856L..11C |language=en}}
- {{Cite journal |title=The Solar Neighborhood. XVI. Parallaxes from CTIOPI: Final Results from the 1.5 m Telescope Program |last1=Costa |first1=E. |last2=Mendez |first2=R. A. |last3=Jao |first3=W.-C. |last4=Henry |first4=T. J. |display-authors=4|last5=Subasavage |first5=J. P. |last6=Ianna |first6=P. A. |journal=The Astronomical Journal |volume=132 |pages=1234 |number=3 |date=4 August 2006 |doi=10.1086/505706 |bibcode=2006AJ....132.1234C |s2cid=18952940 |citeseerx=10.1.1.622.2310}}
- {{cite journal |last1=Covone |first1=Giovanni |last2=Ienco |first2=Riccardo M |last3=Cacciapuoti |first3=Luca |last4=Inno |first4=Laura |title=Efficiency of the oxygenic photosynthesis on Earth-like planets in the habitable zone |journal=Monthly Notices of the Royal Astronomical Society |date=11 August 2021 |volume=505 |issue=3 |pages=3329–3335 |arxiv=2104.01425 |doi=10.1093/mnras/stab1357 |bibcode=2021MNRAS.505.3329C |s2cid=233025250 |issn=0035-8711}}
- {{cite journal |title=VizieR Online Data Catalog: 2MASS All-Sky Catalog of Point Sources (Cutri+ 2003) |journal=CDS/ADC Collection of Electronic Catalogues |page=II/246 |last1=Cutri |first1=R. M. |last2=Skrutskie |first2=M. F. |last3=Van Dyk |first3=S. |last4=Beichman |first4=C. A. |display-authors=4|last5=Carpenter |first5=J. M. |last6=Chester |first6=T. |last7=Cambresy |first7=L. |last8=Evans |first8=T. |last9=Fowler |first9=J. |last10=Gizis |first10=J. |last11=Howard |first11=E. |last12=Huchra |first12=J. |last13=Jarrett |first13=T. |last14=Kopan |first14=E. L. |last15=Kirkpatrick |first15=J. D. |last16=Light |first16=R. M. |last17=Marsh |first17=K. A. |last18=McCallon |first18=H. |last19=Schneider |first19=S. |last20=Stiening |first20=R. |last21=Sykes |first21=M. |last22=Weinberg |first22=M. |last23=Wheaton |first23=W. A. |last24=Wheelock |first24=S. |last25=Zacarias |first25=N. |number=2246 |date=June 2003 |bibcode=2003yCat.2246....0C}}
- {{cite journal |last1=Delrez |first1=L |last2=Gillon |first2=M |last3=Triaud |first3=A H M J |last4=Demory |first4=B-O |display-authors=4|last5=de Wit |first5=J |last6=Ingalls |first6=J G |last7=Agol |first7=E |last8=Bolmont |first8=E |last9=Burdanov |first9=A |last10=Burgasser |first10=A J |last11=Carey |first11=S J |last12=Jehin |first12=E |last13=Leconte |first13=J |last14=Lederer |first14=S |last15=Queloz |first15=D |last16=Selsis |first16=F |last17=Van Grootel |first17=V |title=Early 2017 observations of TRAPPIST-1 with Spitzer |journal=Monthly Notices of the Royal Astronomical Society |date=11 April 2018 |volume=475 |issue=3 |pages=3577–3597 |arxiv=1801.02254 |bibcode=2018MNRAS.475.3577D |doi=10.1093/mnras/sty051 |s2cid=54649681 }}
- {{cite journal |last1=Delrez |first1=L. |last2=Murray |first2=C. A. |last3=Pozuelos |first3=F. J. |last4=Narita |first4=N. |last5=Ducrot |first5=E. |last6=Timmermans |first6=M. |last7=Watanabe |first7=N. |last8=Burgasser |first8=A. J. |last9=Hirano |first9=T. |last10=Rackham |first10=B. V. |last11=Stassun |first11=K. G. |last12=Grootel |first12=V. Van |last13=Aganze |first13=C. |last14=Cointepas |first14=M. |last15=Howell |first15=S. |last16=Kaltenegger |first16=L. |last17=Niraula |first17=P. |last18=Sebastian |first18=D. |title=Two temperate super-Earths transiting a nearby late-type M dwarf |journal=Astronomy & Astrophysics |date=8 September 2022 |volume=667 |pages=A59 |doi=10.1051/0004-6361/202244041 |arxiv=2209.02831 |bibcode=2022A&A...667A..59D |s2cid=252110654 |url=https://www.aanda.org/component/article?access=doi&doi=10.1051/0004-6361/202244041 |language=en |issn=0004-6361|via=arXiv}}
- {{cite journal |last1=Deming |first1=Drake |last2=Knutson |first2=Heather A. |title=Highlights of exoplanetary science from Spitzer |journal=Nature Astronomy |date=May 2020 |volume=4 |issue=5 |pages=453–466 |doi=10.1038/s41550-020-1100-9 |arxiv=2005.11331 |bibcode=2020NatAs...4..453D |s2cid=218870017 |language=en |issn=2397-3366}}
- {{cite journal |last1=Demory |first1=B.-O. |last2=Pozuelos |first2=F. J. |last3=Chew |first3=Y. Gómez Maqueo |last4=Sabin |first4=L. |display-authors=4|last5=Petrucci |first5=R. |last6=Schroffenegger |first6=U. |last7=Grimm |first7=S. L. |last8=Sestovic |first8=M. |last9=Gillon |first9=M. |last10=McCormac |first10=J. |last11=Barkaoui |first11=K. |last12=Benz |first12=W. |last13=Bieryla |first13=A. |last14=Bouchy |first14=F. |last15=Burdanov |first15=A. |last16=Collins |first16=K. A. |last17=Wit |first17=J. de |last18=Dressing |first18=C. D. |last19=Garcia |first19=L. J. |last20=Giacalone |first20=S. |last21=Guerra |first21=P. |last22=Haldemann |first22=J. |last23=Heng |first23=K. |last24=Jehin |first24=E. |last25=Jofré |first25=E. |last26=Kane |first26=S. R. |last27=Lillo-Box |first27=J. |last28=Maigné |first28=V. |last29=Mordasini |first29=C. |last30=Morris |first30=B. M. |last31=Niraula |first31=P. |last32=Queloz |first32=D. |last33=Rackham |first33=B. V. |last34=Savel |first34=A. B. |last35=Soubkiou |first35=A. |last36=Srdoc |first36=G. |last37=Stassun |first37=K. G. |last38=Triaud |first38=A. H. M. J. |last39=Zambelli |first39=R. |last40=Ricker |first40=G. |last41=Latham |first41=D. W. |last42=Seager |first42=S. |last43=Winn |first43=J. N. |last44=Jenkins |first44=J. M. |last45=Calvario-Velásquez |first45=T. |last46=Herrera |first46=J. A. Franco |last47=Colorado |first47=E. |last48=Zepeda |first48=E. O. Cadena |last49=Figueroa |first49=L. |last50=Watson |first50=A. M. |last51=Lugo-Ibarra |first51=E. E. |last52=Carigi |first52=L. |last53=Guisa |first53=G. |last54=Herrera |first54=J. |last55=Díaz |first55=G. Sierra |last56=Suárez |first56=J. C. |last57=Barrado |first57=D. |last58=Batalha |first58=N. M. |last59=Benkhaldoun |first59=Z. |last60=Chontos |first60=A. |last61=Dai |first61=F. |last62=Essack |first62=Z. |last63=Ghachoui |first63=M. |last64=Huang |first64=C. X. |last65=Huber |first65=D. |last66=Isaacson |first66=H. |last67=Lissauer |first67=J. J. |last68=Morales-Calderón |first68=M. |last69=Robertson |first69=P. |last70=Roy |first70=A. |last71=Twicken |first71=J. D. |last72=Vanderburg |first72=A. |last73=Weiss |first73=L. M. |title=A super-Earth and a sub-Neptune orbiting the bright, quiet M3 dwarf TOI-1266 |journal=Astronomy & Astrophysics |date=1 October 2020 |volume=642 |pages=A49 |doi=10.1051/0004-6361/202038616 |arxiv=2009.04317 |bibcode=2020A&A...642A..49D |s2cid=221554586 |language=en |issn=0004-6361}}
- {{cite book |last1=Determann |first1=Jörg Matthias |title=Space science and the Arab world: astronauts, observatories and nationalism in the Middle East |date=2019 |isbn=978-1-83860-015-0 |oclc=1122719747 |url=https://www.worldcat.org/oclc/1122719747|publisher=Bloomsbury Publishing}}
- {{cite journal |last1=Dong |first1=Chuanfei |last2=Jin |first2=Meng |last3=Lingam |first3=Manasvi |last4=Airapetian |first4=Vladimir S. |display-authors=4|last5=Ma |first5=Yingjuan |last6=Holst |first6=Bart van der |title=Atmospheric escape from the TRAPPIST-1 planets and implications for habitability |journal=Proceedings of the National Academy of Sciences |date=9 January 2018 |volume=115 |issue=2 |pages=260–265 |doi=10.1073/pnas.1708010115 |pmid=29284746 |pmc=5777028 |arxiv=1705.05535 |bibcode=2018PNAS..115..260D |s2cid=31195274 |language=en |issn=0027-8424|doi-access=free }}
- {{cite journal |last1=dos Santos |first1=Leonardo A.|last2=Bourrier |first2=Vincent |last3=Ehrenreich |first3=David |last4=Kameda |first4=Shingo |title=Observability of hydrogen-rich exospheres in Earth-like exoplanets |journal=Astronomy & Astrophysics |date=1 February 2019 |volume=622 |pages=A46 |doi=10.1051/0004-6361/201833392 |arxiv=1812.02145|bibcode=2019A&A...622A..46D|s2cid=119013251 |language=en |issn=0004-6361}}
- {{cite journal |last1=Ducrot |first1=E. |last2=Gillon |first2=M. |last3=Delrez |first3=L. |last4=Agol |first4=E. |display-authors=4|last5=Rimmer |first5=P. |last6=Turbet |first6=M. |last7=Günther |first7=M. N. |last8=Demory |first8=B.-O. |last9=Triaud |first9=A. H. M. J. |last10=Bolmont |first10=E. |last11=Burgasser |first11=A. |last12=Carey |first12=S. J. |last13=Ingalls |first13=J. G. |last14=Jehin |first14=E. |last15=Leconte |first15=J. |last16=Lederer |first16=S. M. |last17=Queloz |first17=D. |last18=Raymond |first18=S. N. |last19=Selsis |first19=F. |last20=Grootel |first20=V. Van |last21=Wit |first21=J. de |title=TRAPPIST-1: Global results of the Spitzer Exploration Science Program Red Worlds |journal=Astronomy & Astrophysics |date=1 August 2020 |volume=640 |pages=A112 |doi=10.1051/0004-6361/201937392 |arxiv=2006.13826 |bibcode=2020A&A...640A.112D |s2cid=220041987 |language=en |issn=0004-6361}}
- {{Cite journal|last=Ducrot|first=Elsa|date=2 April 2021|title=A brief history of the TRAPPIST-1 system Article sur invitation – Invited paper|url=https://popups.uliege.be/0037-9565/index.php?id=10277|journal=Bulletin de la Société Royale des Sciences de Liège|doi=10.25518/0037-9565.10277 |s2cid=246354436 |language=en|issn=0037-9565}}
- {{cite journal |last1=Eager |first1=Jake K. |last2=Reichelt |first2=David J. |last3=Mayne |first3=Nathan J. |last4=Lambert |first4=F. Hugo |display-authors=4|last5=Sergeev |first5=Denis E. |last6=Ridgway |first6=Robert J. |last7=Manners |first7=James |last8=Boutle |first8=Ian A. |last9=Lenton |first9=Timothy M. |last10=Kohary |first10=Krisztian |title=Implications of different stellar spectra for the climate of tidally locked Earth-like exoplanets |journal=Astronomy & Astrophysics |date=1 July 2020 |volume=639 |pages=A99 |doi=10.1051/0004-6361/202038089 |arxiv=2005.13002 |bibcode=2020A&A...639A..99E |s2cid=218900900 |language=en |issn=0004-6361}}
- {{cite journal |last1=Edwards |first1=Billy |last2=Changeat |first2=Quentin |last3=Mori |first3=Mayuko |last4=Anisman |first4=Lara O. |display-authors=4|last5=Morvan |first5=Mario |last6=Yip |first6=Kai Hou |last7=Tsiaras |first7=Angelos |last8=Al-Refaie |first8=Ahmed |last9=Waldmann |first9=Ingo |last10=Tinetti |first10=Giovanna |title=Hubble WFC3 Spectroscopy of the Habitable-zone Super-Earth LHS 1140 b |journal=The Astronomical Journal |date=24 December 2020 |volume=161 |issue=1 |pages=44 |arxiv=2011.08815 |doi=10.3847/1538-3881/abc6a5 |s2cid=226975730 |language=en}}
- {{cite journal |last1=Elshaboury |first1=S. M. |last2=Abouelmagd |first2=Elbaz I. |last3=Kalantonis |first3=V. S. |last4=Perdios |first4=E. A. |title=The planar restricted three-body problem when both primaries are triaxial rigid bodies: Equilibrium points and periodic orbits |journal=Astrophysics and Space Science |date=25 August 2016 |volume=361 |issue=9 |pages=315 |doi=10.1007/s10509-016-2894-x |bibcode=2016Ap&SS.361..315E |s2cid=254252200 |url=https://link.springer.com/article/10.1007/s10509-016-2894-x |language=en |issn=1572-946X}}
- {{cite web|url=https://exoplanets.nasa.gov/alien-worlds/exoplanet-travel-bureau/explore-trappist-1d/?travel_bureau=true/|access-date=16 November 2021|title=Explore the Surface – TRAPPIST 1d|website=Exoplanet Travel Bureau|publisher=NASA|ref={{harvid|Exoplanet Travel Bureau|2021}}}}
- {{cite journal |last1=Fabbian |first1=D. |last2=Simoniello |first2=R. |last3=Collet |first3=R. |last4=Criscuoli |first4=S. |display-authors=4|last5=Korhonen |first5=H. |last6=Krivova |first6=N. A. |last7=Oláh |first7=K. |last8=Jouve |first8=L. |last9=Solanki |first9=S. K. |last10=Alvarado-Gómez |first10=J. D. |last11=Booth |first11=R. |last12=García |first12=R. A. |last13=Lehtinen |first13=J. |last14=See |first14=V. |title=The variability of magnetic activity in solar-type stars |journal=Astronomische Nachrichten |date=2017 |volume=338 |issue=7 |pages=753–772 |bibcode=2017AN....338..753F |doi=10.1002/asna.201713403 |s2cid=53572712 |language=en |issn=1521-3994}}
- {{cite journal |last1=Farrish |first1=Alison O. |last2=Alexander |first2=David |last3=Maruo |first3=Mei |last4=DeRosa |first4=Marc |display-authors=4|last5=Toffoletto |first5=Frank |last6=Sciola |first6=Anthony M. |title=Characterizing the Magnetic Environment of Exoplanet Stellar Systems |journal=The Astrophysical Journal |date=30 October 2019 |volume=885 |issue=1 |pages=51 |doi=10.3847/1538-4357/ab4652 |bibcode=2019ApJ...885...51F |s2cid=209907654 |language=en}}
- {{cite journal |last1=Fidrick |first1=Dawn |last2=Yeung |first2=Gee |last3=Niemack |first3=Bob |last4=Dixon |first4=Don |title=The Art and Science of Imaging Worlds: Griffith Observatory's planetarium show Signs of Life |journal=ACM SIGGRAPH 2020 Talks |date=17 August 2020 |pages=1–2 |doi=10.1145/3388767.3411060 |url=https://dl.acm.org/doi/abs/10.1145/3388767.3411060 |isbn=9781450379717 |s2cid=221178064 }}
- {{cite journal |last1=Fischer |first1=Christian |last2=Saur |first2=Joachim |title=Time-variable Electromagnetic Star–Planet Interaction: The TRAPPIST-1 System as an Exemplary Case |journal=The Astrophysical Journal |date=14 February 2019 |volume=872 |issue=1 |pages=113 |doi=10.3847/1538-4357/aafaf2 |arxiv=1901.02747 |bibcode=2019ApJ...872..113F |s2cid=119326120 |language=en}}
- {{cite journal |last1=Flock |first1=Mario |last2=Turner |first2=Neal J. |last3=Mulders |first3=Gijs D. |last4=Hasegawa |first4=Yasuhiro |display-authors=4|last5=Nelson |first5=Richard P. |last6=Bitsch |first6=Bertram |title=Planet formation and migration near the silicate sublimation front in protoplanetary disks |journal=Astronomy & Astrophysics |date=1 October 2019 |volume=630 |pages=A147 |doi=10.1051/0004-6361/201935806 |arxiv=1910.03901 |bibcode=2019A&A...630A.147F |s2cid=203027318 |language=en |issn=0004-6361}}
- {{Cite book |last=Fortney|first=Jonathan J.|chapter=Modeling Exoplanetary Atmospheres: An Overview|date=2018|title=Astrophysics of Exoplanetary Atmospheres|series=Astrophysics and Space Science Library|volume=450|pages=51–88|editor-last=Bozza|editor-first=Valerio|place=Cham|publisher=Springer International Publishing|doi=10.1007/978-3-319-89701-1_2|arxiv=1804.08149|isbn=978-3-319-89700-4|s2cid=59406383|editor2-last=Mancini|editor2-first=Luigi|editor3-last=Sozzetti|editor3-first=Alessandro}}
- {{cite journal |last1=Fraire |first1=Juan Andres |last2=Feldmann |first2=Marius |last3=Walter |first3=Felix |last4=Fantino |first4=Elena |display-authors=4|last5=Burleigh |first5=Scott C. |title=Networking in Interstellar Dimensions: Communicating With TRAPPIST-1 |journal=IEEE Transactions on Aerospace and Electronic Systems |date=August 2019 |volume=55 |issue=4 |pages=1656–1665 |doi=10.1109/TAES.2018.2874149 |bibcode=2019ITAES..55.1656F |s2cid=117702090 |url=https://ieeexplore.ieee.org/document/8481450 |issn=1557-9603}}
- {{cite journal |last1=Fraschetti |first1=F. |last2=Drake |first2=J. J. |last3=Alvarado-Gómez |first3=J. D. |last4=Moschou |first4=S. P. |display-authors=4|last5=Garraffo |first5=C. |last6=Cohen |first6=O. |title=Stellar Energetic Particles in the Magnetically Turbulent Habitable Zones of TRAPPIST-1-like Planetary Systems |journal=The Astrophysical Journal |date=18 March 2019 |volume=874 |issue=1 |pages=21 |doi=10.3847/1538-4357/ab05e4 |arxiv=1902.03732 |bibcode=2019ApJ...874...21F |hdl=10150/633277 |s2cid=119081355 |language=en}}
- {{cite journal |last1=Gabriel |first1=Travis S. J. |last2=Allen-Sutter |first2=Harrison |title=Dependencies of Mantle Shock Heating in Pairwise Accretion |journal=The Astrophysical Journal Letters |date=1 July 2021 |volume=915 |issue=2 |pages=L32 |doi=10.3847/2041-8213/abffd1 |bibcode=2021ApJ...915L..32G |s2cid=235817461 |language=en}}
- {{Cite book |url=http://link.springer.com/10.1007/978-3-642-11274-4 |title=Encyclopedia of Astrobiology |date=2011 |publisher=Springer Berlin Heidelberg |isbn=978-3-642-11271-3 |editor-last=Gargaud |editor-first=Muriel |location=Berlin, Heidelberg |language=en |doi=10.1007/978-3-642-11274-4 |bibcode=2011eab..book.....G |s2cid=120147124 |editor-last2=Amils |editor-first2=Ricardo |editor-last3=Quintanilla |editor-first3=José Cernicharo |editor-last4=Cleaves |editor-first4=Henderson James |editor-last5=Irvine |editor-first5=William M. |editor-last6=Pinti |editor-first6=Daniele L. |editor-last7=Viso |editor-first7=Michel}}
- {{cite journal |last1=Gibb |first1=Bruce C. |title=Beyond Hubble |journal=Nature Chemistry |date=27 October 2022 |volume=14 |issue=11 |pages=1207–1209 |doi=10.1038/s41557-022-01080-2 |pmid=36302866 |bibcode=2022NatCh..14.1207G |s2cid=253184326 |url=https://www.nature.com/articles/s41557-022-01080-2 |language=en |issn=1755-4349}}
- {{cite journal |last1=Gillon |first1=Michaël |title=Life under another Sun: From Science Fiction to Science |journal=European Review |date=February 2020 |volume=28 |issue=1 |pages=18–39 |doi=10.1017/S1062798719000267 |hdl=2268/254712 |s2cid=210575064 |language=en |issn=1062-7987 |ref={{harvid|Gillon|2020a}}}}
- {{cite report|last=Gillon|first=Michaël|title=TRAPPIST-1: Toward the Comparative Study of Temperate Terrestrial Worlds|year=2020|pages=49–52 |ref={{harvid|Gillon|2020b}}}}
- {{cite report|url=https://orbi.uliege.be/handle/2268/159868|last1=Gillon|first1=M.|last2=Jehin|first2=E.|last3=Delrez|first3=L.|last4=Magain|first4=P.|display-authors=4|last5=Opitom|first5=C.|last6=Sohy|first6=S.|year=2013|title=SPECULOOS: search for habitable planets eclipsing ULtra-cOOl stars|hdl=2268/159868|format=PDF}}
- {{cite journal |last1=Gillon |first1=Michaël |last2=Jehin |first2=Emmanuël |last3=Lederer |first3=Susan M. |last4=Delrez |first4=Laetitia |display-authors=4|last5=de Wit |first5=Julien |last6=Burdanov |first6=Artem |last7=Van Grootel |first7=Valérie |last8=Burgasser |first8=Adam J. |last9=Triaud |first9=Amaury H. M. J. |last10=Opitom |first10=Cyrielle |last11=Demory |first11=Brice-Olivier |last12=Sahu |first12=Devendra K. |last13=Bardalez Gagliuffi |first13=Daniella |last14=Magain |first14=Pierre |last15=Queloz |first15=Didier |title=Temperate Earth-sized planets transiting a nearby ultracool dwarf star |journal=Nature |date=May 2016 |volume=533 |issue=7602 |pages=221–224 |doi=10.1038/nature17448 |pmid=27135924 |pmc=5321506 |arxiv=1605.07211 |bibcode=2016Natur.533..221G |language=en |issn=1476-4687}}
- {{cite journal |last1=Gillon |first1=Michaël |last2=Triaud |first2=Amaury H. M. J. |last3=Demory |first3=Brice-Olivier |last4=Jehin |first4=Emmanuël |display-authors=4|last5=Agol |first5=Eric |last6=Deck |first6=Katherine M. |last7=Lederer |first7=Susan M. |last8=de Wit |first8=Julien |last9=Burdanov |first9=Artem |last10=Ingalls |first10=James G. |last11=Bolmont |first11=Emeline |last12=Leconte |first12=Jeremy |last13=Raymond |first13=Sean N. |last14=Selsis |first14=Franck |last15=Turbet |first15=Martin |last16=Barkaoui |first16=Khalid |last17=Burgasser |first17=Adam |last18=Burleigh |first18=Matthew R. |last19=Carey |first19=Sean J. |last20=Chaushev |first20=Aleksander |last21=Copperwheat |first21=Chris M. |last22=Delrez |first22=Laetitia |last23=Fernandes |first23=Catarina S. |last24=Holdsworth |first24=Daniel L. |last25=Kotze |first25=Enrico J. |last26=Van Grootel |first26=Valérie |last27=Almleaky |first27=Yaseen |last28=Benkhaldoun |first28=Zouhair |last29=Magain |first29=Pierre |last30=Queloz |first30=Didier |title=Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1 |journal=Nature |date=February 2017 |volume=542 |issue=7642 |pages=456–460 |doi=10.1038/nature21360 |pmid=28230125 |pmc=5330437 |arxiv=1703.01424 |bibcode=2017Natur.542..456G |s2cid=4391722 |language=en |issn=1476-4687}}
- {{Cite journal|last1=Gillon|first1=Michaël|last2=Meadows|first2=Victoria|last3=Agol|first3=Eric|last4=Burgasser|first4=Adam J.|display-authors=4|last5=Deming|first5=Drake|last6=Doyon|first6=René|last7=Fortney|first7=Jonathan|last8=Kreidberg|first8=Laura|last9=Owen|first9=James|last10=Selsis|first10=Franck|last11=Wit|first11=Julien de|date=2 December 2020|title=The TRAPPIST-1 JWST Community Initiative|url=https://baas.aas.org/pub/2020i0208/release/1|language=en|volume=52|issue=2|doi=10.3847/25c2cfeb.afbf0205|journal=Bulletin of the AAS|page=0208|arxiv=2002.04798 |bibcode=2020BAAS...52.0208G|s2cid=211082517}}
- {{cite journal |last1=Gizis |first1=John E. |last2=Monet |first2=David G. |last3=Reid |first3=I. Neill |last4=Kirkpatrick |first4=J. Davy |display-authors=4|last5=Liebert |first5=James |last6=Williams |first6=Rik J. |title=New Neighbors from 2MASS: Activity and Kinematics at the Bottom of the Main Sequence |journal=The Astronomical Journal |date=August 2000 |volume=120 |issue=2 |pages=1085–1099 |doi=10.1086/301456|arxiv=astro-ph/0004361 |bibcode=2000AJ....120.1085G |s2cid=18819321 }}
- {{cite journal |last1=Glazier |first1=Amy L. |last2=Howard |first2=Ward S. |last3=Corbett |first3=Hank |last4=Law |first4=Nicholas M. |display-authors=4|last5=Ratzloff |first5=Jeffrey K. |last6=Fors |first6=Octavi |last7=del Ser |first7=Daniel |title=Evryscope and K2 Constraints on TRAPPIST-1 Superflare Occurrence and Planetary Habitability |journal=The Astrophysical Journal |date=27 August 2020 |volume=900 |issue=1 |pages=27 |doi=10.3847/1538-4357/aba4a6 |arxiv=2006.14712 |bibcode=2020ApJ...900...27G |s2cid=220128346 |language=en}}
- {{cite book |last1=Goldsmith |first1=Donald |title=Exoplanets: Hidden Worlds and the Quest for Extraterrestrial Life |date=10 September 2018 |publisher=Harvard University Press |isbn=978-0-674-98889-7 |doi=10.4159/9780674988897|bibcode=2018ehwq.book.....G |s2cid=240182683 }}
- {{cite journal |last1=Gonzales |first1=Eileen C. |last2=Faherty |first2=Jacqueline K.|author2-link=Jackie Faherty |last3=Gagné |first3=Jonathan |last4=Teske |first4=Johanna |display-authors=4|last5=McWilliam |first5=Andrew |last6=Cruz |first6=Kelle |title=A Reanalysis of the Fundamental Parameters and Age of TRAPPIST-1 |journal=The Astrophysical Journal |date=29 November 2019 |volume=886 |issue=2 |pages=131 |doi=10.3847/1538-4357/ab48fc |arxiv=1909.13859 |bibcode=2019ApJ...886..131G |s2cid=203594024 |language=en}}
- {{cite journal |last1=Grayver |first1=Alexander |last2=Bower |first2=Dan J. |last3=Saur |first3=Joachim |last4=Dorn |first4=Caroline |last5=Morris |first5=Brett M. |title=Interior Heating of Rocky Exoplanets from Stellar Flares with Application to TRAPPIST-1 |journal=The Astrophysical Journal Letters |date=7 December 2022 |volume=941 |issue=1 |pages=L7 |doi=10.3847/2041-8213/aca287 |arxiv=2211.06140 |bibcode=2022ApJ...941L...7G |s2cid=253499175 |url=https://iopscience.iop.org/article/10.3847/2041-8213/aca287/meta |language=en |issn=2041-8205}}
- {{cite journal |last1=Grenfell |first1=John Lee |title=A review of exoplanetary biosignatures |journal=Physics Reports |date=13 November 2017 |volume=713 |pages=1–17 |doi=10.1016/j.physrep.2017.08.003 |arxiv=1710.03976 |bibcode=2017PhR...713....1G |s2cid=119400674 |language=en |issn=0370-1573}}
- {{cite journal |last1=Grenfell |first1=John Lee |last2=Leconte |first2=Jeremy |last3=Forget |first3=François |last4=Godolt |first4=Mareike |display-authors=4|last5=Carrión-González |first5=Óscar |last6=Noack |first6=Lena |last7=Tian |first7=Feng |last8=Rauer |first8=Heike |last9=Gaillard |first9=Fabrice |last10=Bolmont |first10=Émeline |last11=Charnay |first11=Benjamin |last12=Turbet |first12=Martin |title=Possible Atmospheric Diversity of Low Mass Exoplanets – Some Central Aspects |journal=Space Science Reviews |date=August 2020 |volume=216 |issue=5 |pages=98 |doi=10.1007/s11214-020-00716-4|arxiv=2101.01277 |bibcode=2020SSRv..216...98G |s2cid=225473867 }}
- {{cite journal |last1=Gressier |first1=A. |last2=Mori |first2=M. |last3=Changeat |first3=Q. |last4=Edwards |first4=B. |display-authors=4|last5=Beaulieu |first5=J.-P. |last6=Marcq |first6=E. |last7=Charnay |first7=B. |title=Near-infrared transmission spectrum of TRAPPIST-1 h using Hubble WFC3 G141 observations |journal=Astronomy & Astrophysics |year=2022 |volume=658 |pages=A133 |doi=10.1051/0004-6361/202142140 |arxiv=2112.05510 |bibcode=2022A&A...658A.133G |s2cid=245091619 |language=en |issn=0004-6361|via=arXiv}}
- {{cite journal |last1=Grimm |first1=Simon L. |last2=Demory |first2=Brice-Olivier |last3=Gillon |first3=Michaël |last4=Dorn |first4=Caroline |display-authors=4|last5=Agol |first5=Eric |last6=Burdanov |first6=Artem |last7=Delrez |first7=Laetitia |last8=Sestovic |first8=Marko |last9=Triaud |first9=Amaury H. M. J. |last10=Turbet |first10=Martin |last11=Bolmont |first11=Émeline |last12=Caldas |first12=Anthony |last13=Wit |first13=Julien de |last14=Jehin |first14=Emmanuël |last15=Leconte |first15=Jérémy |last16=Raymond |first16=Sean N. |last17=Grootel |first17=Valérie Van |last18=Burgasser |first18=Adam J. |last19=Carey |first19=Sean |last20=Fabrycky |first20=Daniel |last21=Heng |first21=Kevin |last22=Hernandez |first22=David M. |last23=Ingalls |first23=James G. |last24=Lederer |first24=Susan |last25=Selsis |first25=Franck |last26=Queloz |first26=Didier |title=The nature of the TRAPPIST-1 exoplanets |journal=Astronomy & Astrophysics |date=1 May 2018 |volume=613 |pages=A68 |doi=10.1051/0004-6361/201732233 |arxiv=1802.01377 |bibcode=2018A&A...613A..68G |s2cid=3441829 |language=en |issn=0004-6361}}
- {{cite journal |last1=Guimond |first1=Claire Marie |last2=Rudge |first2=John F. |last3=Shorttle |first3=Oliver |title=Blue Marble, Stagnant Lid: Could Dynamic Topography Avert a Waterworld? |journal=The Planetary Science Journal |date=1 March 2022 |volume=3 |issue=3 |pages=66 |doi=10.3847/psj/ac562e |arxiv=2201.05636 |bibcode=2022PSJ.....3...66G |s2cid=246015582 |url=https://iopscience.iop.org/article/10.3847/PSJ/ac562e/meta}}
- {{cite journal |last1=Guridi |first1=Jose A. |last2=Pertuze |first2=Julio A. |last3=Pfotenhauer |first3=Sebastian M. |title=Natural laboratories as policy instruments for technological learning and institutional capacity building: The case of Chile's astronomy cluster |journal=Research Policy |date=1 March 2020 |volume=49 |issue=2 |pages=103899 |doi=10.1016/j.respol.2019.103899 |s2cid=197453914 |language=en |issn=0048-7333}}
- {{cite journal |last1=Günther |first1=Maximilian N. |last2=Berardo |first2=David A. |last3=Ducrot |first3=Elsa |last4=Murray |first4=Catriona A. |last5=Stassun |first5=Keivan G. |last6=Olah |first6=Katalin |last7=Bouma |first7=L. G. |last8=Rappaport |first8=Saul |last9=Winn |first9=Joshua N. |last10=Feinstein |first10=Adina D. |last11=Matthews |first11=Elisabeth C. |last12=Sebastian |first12=Daniel |last13=Rackham |first13=Benjamin V. |last14=Seli |first14=Bálint |last15=J. Triaud |first15=Amaury H. M. |last16=Gillen |first16=Edward |last17=Levine |first17=Alan M. |last18=Demory |first18=Brice-Olivier |last19=Gillon |first19=Michaël |last20=Queloz |first20=Didier |last21=Ricker |first21=George R. |last22=Vanderspek |first22=Roland K. |last23=Seager |first23=Sara |last24=Latham |first24=David W. |last25=Jenkins |first25=Jon M. |last26=Brasseur |first26=C. E. |last27=Colón |first27=Knicole D. |last28=Daylan |first28=Tansu |last29=Delrez |first29=Laetitia |last30=Fausnaugh |first30=Michael |last31=Garcia |first31=Lionel J. |last32=Jayaraman |first32=Rahul |last33=Jehin |first33=Emmanuel |last34=Kristiansen |first34=Martti H. |last35=Kruijssen |first35=J. M. Diederik |last36=Pedersen |first36=Peter Pihlmann |last37=Pozuelos |first37=Francisco J. |last38=Rodriguez |first38=Joseph E. |last39=Wohler |first39=Bill |last40=Zhan |first40=Zhuchang |title=Complex Modulation of Rapidly Rotating Young M Dwarfs: Adding Pieces to the Puzzle |journal=The Astronomical Journal |date=1 April 2022 |volume=163 |issue=4 |pages=144 |doi=10.3847/1538-3881/ac503c |arxiv=2008.11681 |bibcode=2022AJ....163..144G |s2cid=221319588 |url=https://iopscience.iop.org/article/10.3847/1538-3881/ac503c/meta |language=en}}
- {{cite journal |last1=Gutiérrez |first1=C. M. |last2=Arnold |first2=D. |last3=Copley |first3=D. |last4=Copperwheat |first4=C. M. |display-authors=4|last5=Harvey |first5=E. |last6=Jermak |first6=H. |last7=Knapen |first7=J. |last8=McGrath |first8=A. |last9=Oria |first9=A. |last10=Rebolo |first10=R. |last11=Steele |first11=I. A. |last12=Torres |first12=M. |title=The new 4-m robotic telescope |journal=Astronomische Nachrichten |date=2019 |volume=340 |issue=1–3 |pages=40–45 |doi=10.1002/asna.201913556 |bibcode=2019AN....340...40G |s2cid=133136386 |language=en |issn=1521-3994}}
- {{cite journal |last1=Hakim |first1=Kaustubh |last2=Rivoldini |first2=Attilio |last3=Van Hoolst |first3=Tim |last4=Cottenier |first4=Stefaan |display-authors=4|last5=Jaeken |first5=Jan |last6=Chust |first6=Thomas |last7=Steinle-Neumann |first7=Gerd |title=A new ab initio equation of state of hcp-Fe and its implication on the interior structure and mass-radius relations of rocky super-Earths |journal=Icarus |date=1 October 2018 |volume=313 |pages=61–78 |doi=10.1016/j.icarus.2018.05.005 |arxiv=1805.10530 |bibcode=2018Icar..313...61H |s2cid=119442637 |language=en |issn=0019-1035}}
- {{cite journal |title=Handbook of Scientific Tables |date=May 2022 |doi=10.1142/9789813278523_0001|author=National Astronomical Observatory of Japan|isbn=978-981-3278-53-0 |ref={{harvid|Handbook of Scientific Tables|2022}}}}
- {{cite journal |last1=Harbach |first1=Laura M. |last2=Moschou |first2=Sofia P. |last3=Garraffo |first3=Cecilia |last4=Drake |first4=Jeremy J. |display-authors=4|last5=Alvarado-Gómez |first5=Julián D. |last6=Cohen |first6=Ofer |last7=Fraschetti |first7=Federico |title=Stellar Winds Drive Strong Variations in Exoplanet Evaporative Outflow Patterns and Transit Absorption Signatures |journal=The Astrophysical Journal |date=1 June 2021 |volume=913 |issue=2 |pages=130 |doi=10.3847/1538-4357/abf63a |arxiv=2012.05922 |bibcode=2021ApJ...913..130H |s2cid=228375956 |language=en}}
- {{cite journal |last1=Heising |first1=Matthew Z. |last2=Sasselov |first2=Dimitar D. |last3=Hernquist |first3=Lars |last4=Luisa Tió Humphrey |first4=Ana |title=How Flat Can a Planetary System Get? I. The Case of TRAPPIST-1 |journal=The Astrophysical Journal |date=1 June 2021 |volume=913 |issue=2 |pages=126 |bibcode=2021ApJ...913..126H |doi=10.3847/1538-4357/abf8a8 |s2cid=219262616 |language=en}}
- {{cite journal |last1=Hori |first1=Yasunori |last2=Ogihara |first2=Masahiro |title=Do the TRAPPIST-1 Planets Have Hydrogen-rich Atmospheres? |journal=The Astrophysical Journal |date=28 January 2020 |volume=889 |issue=2 |pages=77 |doi=10.3847/1538-4357/ab6168 |arxiv=1912.05749 |bibcode=2020ApJ...889...77H |s2cid=209324289 |language=en}}
- {{cite journal |last1=Howell |first1=Steve B. |last2=Everett |first2=Mark E. |last3=Horch |first3=Elliott P. |last4=Winters |first4=Jennifer G. |display-authors=4|last5=Hirsch |first5=Lea |last6=Nusdeo |first6=Dan |last7=Scott |first7=Nicholas J. |title=Speckle Imaging Excludes Low-Mass Companions Orbiting the Exoplanet Host Star Trappist-1 |journal=The Astrophysical Journal |date=13 September 2016 |volume=829 |issue=1 |pages=L2 |doi=10.3847/2041-8205/829/1/l2 |arxiv=1610.05269 |bibcode=2016ApJ...829L...2H |s2cid=119183657 |language=en |issn=2041-8213}}
- {{Cite book|url=https://iopscience.iop.org/book/978-0-7503-2296-6|title=The NASA Kepler Mission|date=September 2020|publisher=IOP Publishing|isbn=978-0-7503-2296-6|editor-last=Howell|editor-first=Steve B|doi=10.1088/2514-3433/ab9823ch3|s2cid=242713439}}
- {{cite book |last1=Hughes |first1=Janette |editor-first1=Janette |editor-last1=Hughes |title=Making, makers, makerspaces : the shift to making in 20 schools |date=2022 |location=Cham |doi=10.1007/978-3-031-09819-2 |isbn=978-3-031-09819-2 |s2cid=251731356 |url=https://link.springer.com/book/10.1007/978-3-031-09819-2 |language=en}}
- {{cite journal |last1=Hurford |first1=T. A. |last2=Henning |first2=W. G. |last3=Maguire |first3=R. |last4=Lekic |first4=V. |display-authors=4|last5=Schmerr |first5=N. |last6=Panning |first6=M. |last7=Bray |first7=V. J. |last8=Manga |first8=M. |last9=Kattenhorn |first9=S. A. |last10=Quick |first10=L. C. |last11=Rhoden |first11=A. R. |title=Seismicity on tidally active solid-surface worlds |journal=Icarus |date=1 March 2020 |volume=338 |pages=113466 |doi=10.1016/j.icarus.2019.113466 |pmid=32905557 |pmc=7473397 |bibcode=2020Icar..33813466H |language=en |issn=0019-1035}}
- {{cite book |last1=Janjic |first1=Aleksandar |title=Lebensraum Universum |date=2017 |doi=10.1007/978-3-662-54787-8 |bibcode=2017leun.book.....J |isbn=978-3-662-54786-1 |language=en-gb}}
- {{cite journal |last1=Kaltenegger |first1=L. |last2=Faherty |first2=J. K. |title=Past, present and future stars that can see Earth as a transiting exoplanet |journal=Nature |date=June 2021 |volume=594 |issue=7864 |pages=505–507 |doi=10.1038/s41586-021-03596-y |pmid=34163055 |arxiv=2107.07936 |bibcode=2021Natur.594..505K |s2cid=235626242 |language=en |issn=1476-4687}}
- {{Cite book|last=Kanas|first=Nick|title=Star Maps: History, Artistry, and Cartography|date=2019|publisher=Springer International Publishing|isbn=978-3-030-13612-3|language=en|doi=10.1007/978-3-030-13613-0|s2cid=239353025}}
- {{cite journal |last1=Kane |first1=Stephen R. |last2=Arney |first2=Giada N. |last3=Byrne |first3=Paul K. |last4=Dalba |first4=Paul A. |display-authors=4|last5=Desch |first5=Steven J. |last6=Horner |first6=Jonti |last7=Izenberg |first7=Noam R. |last8=Mandt |first8=Kathleen E. |last9=Meadows |first9=Victoria S. |last10=Quick |first10=Lynnae C. |title=The Fundamental Connections between the Solar System and Exoplanetary Science |journal=Journal of Geophysical Research: Planets |date=February 2021 |volume=126 |issue=2 |doi=10.1029/2020JE006643|arxiv=2012.11628 |bibcode=2021JGRE..12606643K |s2cid=233442891 }}
- {{cite journal |last1=Kane |first1=Stephen R. |title=Worlds without Moons: Exomoon Constraints for Compact Planetary Systems |journal=The Astrophysical Journal |date=13 April 2017 |volume=839 |issue=2 |pages=L19 |doi=10.3847/2041-8213/aa6bf2 |arxiv=1704.01688 |bibcode=2017ApJ...839L..19K |s2cid=119380874 |language=en |issn=2041-8213}}
- {{cite journal |last1=Kane |first1=Stephen R. |last2=Jansen |first2=Tiffany |last3=Fauchez |first3=Thomas |last4=Selsis |first4=Franck |display-authors=4|last5=Ceja |first5=Alma Y. |title=Phase Modeling of the TRAPPIST-1 Planetary Atmospheres |journal=The Astronomical Journal |date=6 January 2021 |volume=161 |issue=2 |pages=53 |doi=10.3847/1538-3881/abcfbe |arxiv=2012.00080 |bibcode=2021AJ....161...53K |s2cid=227238721 |language=en}}
- {{Cite conference|last1=Kendall|first1=M.|last2=Byrne|first2=P. K.|date=1 March 2020|title=Assessing Geological Conditions at the Ocean Floors of the TRAPPIST-1 Rocky Planets|url=https://www.hou.usra.edu/meetings/lpsc2020/pdf/3030.pdf|bibcode=2020LPI....51.3030K|pages=3030|conference=51st Lunar and Planetary Science Conference|location=The Woodlands, Texas}}
- {{cite journal |last1=Kislyakova |first1=K. G. |last2=Noack |first2=L. |last3=Johnstone |first3=C. P. |last4=Zaitsev |first4=V. V. |display-authors=4|last5=Fossati |first5=L. |last6=Lammer |first6=H. |last7=Khodachenko |first7=M. L. |last8=Odert |first8=P. |last9=Güdel |first9=M. |title=Magma oceans and enhanced volcanism on TRAPPIST-1 planets due to induction heating |journal=Nature Astronomy |date=December 2017 |volume=1 |issue=12 |pages=878–885 |doi=10.1038/s41550-017-0284-0 |arxiv=1710.08761 |bibcode=2017NatAs...1..878K |s2cid=119429870 |language=en |issn=2397-3366}}
- {{cite journal |last1=Kochukhov |first1=Oleg |title=Magnetic fields of M dwarfs |journal=The Astronomy and Astrophysics Review |date=December 2021 |volume=29 |issue=1 |pages=1 |doi=10.1007/s00159-020-00130-3|arxiv=2011.01781 |bibcode=2021A&ARv..29....1K |s2cid=226237078 }}
- {{cite journal |last1=Kopparla |first1=Pushkar |last2=Natraj |first2=Vijay |last3=Crisp |first3=David |last4=Bott |first4=Kimberly |display-authors=4|last5=Swain |first5=Mark R |last6=Yung |first6=Yuk L |title=Observing Oceans in Tightly Packed Planetary Systems: Perspectives from Polarization Modeling of the TRAPPIST-1 System |journal=The Astronomical Journal |date=10 September 2018 |volume=156 |issue=4 |pages=143 |doi=10.3847/1538-3881/aad9a1 |bibcode=2018AJ....156..143K |s2cid=125467757 |url=https://resolver.caltech.edu/CaltechAUTHORS:20190102-155140312 |language=en}}
- {{cite journal |last1=Kral |first1=Quentin |last2=Wyatt |first2=Mark C. |last3=Triaud |first3=Amaury H. M. J. |last4=Marino |first4=Sebastian |display-authors=4|last5=Thébault |first5=Philippe |last6=Shorttle |first6=Oliver |title=Cometary impactors on the TRAPPIST-1 planets can destroy all planetary atmospheres and rebuild secondary atmospheres on planets f, g, and h |journal=Monthly Notices of the Royal Astronomical Society |date=11 September 2018 |volume=479 |issue=2 |pages=2649–2672 |arxiv=1802.05034 |bibcode=2018MNRAS.479.2649K |doi=10.1093/mnras/sty1677 |s2cid=118880067 }}
- {{cite journal |last1=Kral |first1=Quentin |last2=Davoult |first2=Jeanne |last3=Charnay |first3=Benjamin |title=Formation of secondary atmospheres on terrestrial planets by late disk accretion |journal=Nature Astronomy |date=August 2020 |volume=4 |issue=8 |pages=769–775 |doi=10.1038/s41550-020-1050-2 |arxiv=2004.02496 |bibcode=2020NatAs...4..769K |s2cid=214802025 |language=en |issn=2397-3366}}
- {{cite journal |last1=Lane |first1=H. Chad |last2=Gadbury |first2=Matthew |last3=Ginger |first3=Jeff |last4=Yi |first4=Sherry |last5=Comins |first5=Neil |last6=Henhapl |first6=Jack |last7=Rivera-Rogers |first7=Aidan |title=Triggering STEM Interest With Minecraft in a Hybrid Summer Camp|journal=Innovations in Remote Instruction |date=28 November 2022 |volume=3 |issue=4 |doi=10.1037/tmb0000077 |s2cid=254344269 |url=https://tmb.apaopen.org/pub/5pkfd4sc/release/1?readingCollection=2cd16b3a |language=en}}
- {{cite journal|arxiv=2007.07278|title=Global Analysis of the TRAPPIST Ultra-Cool Dwarf Transit Survey|year=2020|doi=10.1093/mnras/staa2054|last1=Lienhard|first1=F.|last2=Queloz|first2=D.|last3=Gillon|first3=M.|last4=Burdanov|first4=A.|display-authors=4|last5=Delrez|first5=L.|last6=Ducrot|first6=E.|last7=Handley|first7=W.|last8=Jehin|first8=E.|last9=Murray|first9=C. A.|last10=Triaud|first10=A H M J.|last11=Gillen|first11=E.|last12=Mortier|first12=A.|last13=Rackham|first13=B. V.|journal=Monthly Notices of the Royal Astronomical Society|volume=497|issue=3|pages=3790–3808|bibcode=2020MNRAS.497.3790L|s2cid=220525769}}
- {{cite journal |last1=Lingam |first1=Manasvi |last2=Loeb |first2=Abraham |title=Physical constraints on the likelihood of life on exoplanets |journal=International Journal of Astrobiology |date=April 2018 |volume=17 |issue=2 |pages=116–126 |doi=10.1017/S1473550417000179 |arxiv=1707.02996 |bibcode=2018IJAsB..17..116L |s2cid=35978131 |language=en |issn=1473-5504 |ref={{harvid|Lingam|Loeb|2018a}}}}
- {{cite journal |last1=Lingam |first1=Manasvi |last2=Loeb |first2=Abraham |title=Implications of Tides for Life on Exoplanets |journal=Astrobiology |date=July 2018 |volume=18 |issue=7 |pages=967–982 |doi=10.1089/ast.2017.1718 |pmid=30010383 |arxiv=1707.04594 |bibcode=2018AsBio..18..967L |s2cid=51628150 |issn=1531-1074 |ref={{harvid|Lingam|Loeb|2018b}}}}
- {{Cite journal |last1=Lingam |first1=Manasvi |last2=Loeb |first2=Abraham |date=August 2018 |title=Limitations of Chemical Propulsion for Interstellar Escape from Habitable Zones Around Low-mass Stars |url=https://iopscience.iop.org/article/10.3847/2515-5172/aadcf4 |journal=Research Notes of the AAS |volume=2 |issue=3 |pages=154 |doi=10.3847/2515-5172/aadcf4 |arxiv=1808.08141 |bibcode=2018RNAAS...2..154L |s2cid=119470444 |issn=2515-5172|ref={{harvid|Lingam|Loeb|2018c}}}}
- {{cite journal |last1=Lingam |first1=Manasvi |last2=Loeb |first2=Abraham |title=Colloquium: Physical constraints for the evolution of life on exoplanets |journal=Reviews of Modern Physics |date=11 June 2019 |volume=91 |issue=2 |pages=021002 |doi=10.1103/RevModPhys.91.021002 |arxiv=1810.02007 |bibcode=2019RvMP...91b1002L |s2cid=85501199 |ref={{harvid|Lingam|Loeb|2019a}}}}
- {{cite journal |last1=Lingam |first1=Manasvi |last2=Loeb |first2=Abraham |title=Photosynthesis on habitable planets around low-mass stars |journal=Monthly Notices of the Royal Astronomical Society |date=1 June 2019 |volume=485 |issue=4 |pages=5924–5928 |arxiv=1901.01270 |bibcode=2019MNRAS.485.5924L |doi=10.1093/mnras/stz847 |s2cid=84843940 |ref={{harvid|Lingam|Loeb|2019b}}}}
- {{cite journal |last1=Lingam |first1=Manasvi |last2=Loeb |first2=Abraham |title=Subsurface exolife |journal=International Journal of Astrobiology |date=April 2019 |volume=18 |issue=2 |pages=112–141 |doi=10.1017/S1473550418000083 |arxiv=1711.09908 |bibcode=2019IJAsB..18..112L |s2cid=102480854 |ref={{harvid|Lingam|Loeb|2019c}}}}
- {{cite book |last1=Lingam |first1=Manasvi |last2=Loeb |first2=Avi |title=Life in the Cosmos |date=21 June 2021 |publisher=Harvard University Press |doi=10.4159/9780674259959 |isbn=978-0-674-25995-9 |s2cid=242834912 |language=en}}
- {{Cite book|last=Linsky|first=Jeffrey|title=Host Stars and their Effects on Exoplanet Atmospheres: An Introductory Overview|date=2019|publisher=Springer International Publishing|isbn=978-3-030-11451-0|series=Lecture Notes in Physics|volume=955|language=en|doi=10.1007/978-3-030-11452-7|s2cid=181923774}}
- {{cite journal |last1=Liu |first1=Beibei |last2=Ji |first2=Jianghui |title=A tale of planet formation: from dust to planets |journal=Research in Astronomy and Astrophysics |date=October 2020 |volume=20 |issue=10 |pages=164 |doi=10.1088/1674-4527/20/10/164 |arxiv=2009.02321 |bibcode=2020RAA....20..164L |s2cid=221507902 |language=en}}
- {{cite journal |last1=Luger |first1=Rodrigo |last2=Sestovic |first2=Marko |last3=Kruse |first3=Ethan |last4=Grimm |first4=Simon L. |display-authors=4|last5=Demory |first5=Brice-Olivier |last6=Agol |first6=Eric |last7=Bolmont |first7=Emeline |last8=Fabrycky |first8=Daniel |last9=Fernandes |first9=Catarina S. |last10=Van Grootel |first10=Valérie |last11=Burgasser |first11=Adam |last12=Gillon |first12=Michaël |last13=Ingalls |first13=James G. |last14=Jehin |first14=Emmanuël |last15=Raymond |first15=Sean N. |last16=Selsis |first16=Franck |last17=Triaud |first17=Amaury H. M. J. |last18=Barclay |first18=Thomas |last19=Barentsen |first19=Geert |last20=Howell |first20=Steve B. |last21=Delrez |first21=Laetitia |last22=de Wit |first22=Julien |last23=Foreman-Mackey |first23=Daniel |last24=Holdsworth |first24=Daniel L. |last25=Leconte |first25=Jérémy |last26=Lederer |first26=Susan |last27=Turbet |first27=Martin |last28=Almleaky |first28=Yaseen |last29=Benkhaldoun |first29=Zouhair |last30=Magain |first30=Pierre |last31=Morris |first31=Brett M. |last32=Heng |first32=Kevin |last33=Queloz |first33=Didier |title=A seven-planet resonant chain in TRAPPIST-1 |journal=Nature Astronomy |date=22 May 2017 |volume=1 |issue=6 |page=0129 |doi=10.1038/s41550-017-0129 |arxiv=1703.04166 |bibcode=2017NatAs...1E.129L |s2cid=54770728 |language=en |issn=2397-3366}}
- {{cite journal |last1=Madhusudhan |first1=Nikku |title=Exoplanetary Atmospheres: Key Insights, Challenges, and Prospects |journal=Annual Review of Astronomy and Astrophysics |date=18 August 2019 |volume=57 |issue=1 |pages=617–663 |doi=10.1146/annurev-astro-081817-051846 |arxiv=1904.03190 |bibcode=2019ARA&A..57..617M |s2cid=102350577 |language=en |issn=0066-4146}}
- {{Cite book|last=Madhusudhan|first=Nikku|title=Exofrontiers: big questions in exoplanetary science|date=2020|isbn=978-0-7503-1472-5|oclc=1285004266|publisher=IOP Publishing}}
- {{cite journal |last1=Maltagliati |first1=Luca |title=Exoplanets: Why should we care about TRAPPIST-1? |journal=Nature Astronomy |date=27 March 2017 |volume=1 |issue=4 |page=0104 |doi=10.1038/s41550-017-0104 |bibcode=2017NatAs...1E.104M |s2cid=125667140 |language=en |issn=2397-3366}}
- {{cite journal |last1=Marino |first1=S. |last2=Wyatt |first2=M. C. |last3=Kennedy |first3=G. M. |last4=Kama |first4=M. |display-authors=4|last5=Matrà |first5=L. |last6=Triaud |first6=A. H. M. J. |last7=Henning |first7=Th. |title=Searching for a dusty cometary belt around TRAPPIST-1 with ALMA |journal=Monthly Notices of the Royal Astronomical Society |date=11 March 2020 |volume=492 |issue=4 |pages=6067–6073 |arxiv=1909.09158 |bibcode=2020MNRAS.492.6067M |doi=10.1093/mnras/staa266 |s2cid=202712440 }}
- {{cite journal |last1=Marov |first1=M. Ya. |last2=Shevchenko |first2=I. I. |title=Exoplanets: nature and models |journal=Physics-Uspekhi |date=September 2020 |volume=63 |issue=9 |pages=837–871 |doi=10.3367/ufne.2019.10.038673 |bibcode=2020PhyU...63..837M |s2cid=209965726 |language=en |issn=1063-7869}}
- {{cite journal |last1=Martin |first1=Rebecca G. |last2=Livio |first2=Mario |title=Asteroids and Life: How Special Is the Solar System? |journal=The Astrophysical Journal Letters |date=1 February 2022 |volume=926 |issue=2 |pages=L20 |doi=10.3847/2041-8213/ac511c |arxiv=2202.01352 |bibcode=2022ApJ...926L..20M |s2cid=246485608 |url=https://iopscience.iop.org/article/10.3847/2041-8213/ac511c/meta |language=en}}
- {{cite journal |last1=Martínez-Rodríguez |first1=Héctor |last2=Caballero |first2=José Antonio |last3=Cifuentes |first3=Carlos |last4=Piro |first4=Anthony L. |display-authors=4|last5=Barnes |first5=Rory |title=Exomoons in the Habitable Zones of M Dwarfs |journal=The Astrophysical Journal |date=26 December 2019 |volume=887 |issue=2 |pages=261 |doi=10.3847/1538-4357/ab5640 |arxiv=1910.12054 |bibcode=2019ApJ...887..261M |s2cid=204904780 |language=en}}
- {{cite journal |last1=McDonough |first1=William F. |last2=Yoshizaki |first2=Takashi |title=Terrestrial planet compositions controlled by accretion disk magnetic field |journal=Progress in Earth and Planetary Science |date=2 July 2021 |volume=8 |issue=1 |pages=39 |doi=10.1186/s40645-021-00429-4 |bibcode=2021PEPS....8...39M |s2cid=235701559 |issn=2197-4284}}
- {{Cite book|last=McKay|first=Tristan|url=https://www.cambridge.org/core/elements/semiotic-approach-to-open-notations/567788704882E093CF8032B846CC49AF|title=A Semiotic Approach to Open Notations: Ambiguity as Opportunity|date=2021|publisher=Cambridge University Press|isbn=978-1-108-81332-7|series=Elements in Music since 1945}}
- {{cite book |last1=Meadows |first1=Victoria S |last2=Schmidt |first2=Britney E |title=Planetary astrobiology |date=2020 |isbn=978-0-8165-4006-8 |oclc=1096534611 |url=https://www.worldcat.org/oclc/1096534611 |language=English|publisher=University of Arizona Press}}
- {{cite journal |last1=Meadows |first1=Victoria S. |last2=Arney |first2=Giada N. |last3=Schwieterman |first3=Edward W. |last4=Lustig-Yaeger |first4=Jacob |display-authors=4|last5=Lincowski |first5=Andrew P. |last6=Robinson |first6=Tyler |last7=Domagal-Goldman |first7=Shawn D. |last8=Deitrick |first8=Russell |last9=Barnes |first9=Rory K. |last10=Fleming |first10=David P. |last11=Luger |first11=Rodrigo |last12=Driscoll |first12=Peter E. |last13=Quinn |first13=Thomas R. |last14=Crisp |first14=David |title=The Habitability of Proxima Centauri b: Environmental States and Observational Discriminants |journal=Astrobiology |date=1 February 2018 |volume=18 |issue=2 |pages=133–189 |doi=10.1089/ast.2016.1589 |pmid=29431479 |pmc=5820795 |arxiv=1608.08620 |bibcode=2018AsBio..18..133M |issn=1531-1074}}
- {{cite journal |last1=Miles-Páez |first1=P A |last2=Zapatero Osorio|first2=M R |last3=Pallé |first3=E |last4=Metchev |first4=S A |title=Time-resolved image polarimetry of TRAPPIST-1 during planetary transits |journal=Monthly Notices of the Royal Astronomical Society: Letters |date=21 March 2019 |volume=484 |issue=1 |pages=L38–L42 |arxiv=1901.02041 |bibcode=2019MNRAS.484L..38M |doi=10.1093/mnrasl/slz001 |s2cid=119095657 |issn=1745-3925}}
- {{cite journal |last1=Morris |first1=Brett M. |last2=Agol |first2=Eric |last3=Davenport |first3=James R. A. |last4=Hawley |first4=Suzanne L. |title=Possible Bright Starspots on TRAPPIST-1 |journal=The Astrophysical Journal |date=11 April 2018 |volume=857 |issue=1 |pages=39 |doi=10.3847/1538-4357/aab6a5|arxiv=1803.04543 |bibcode=2018ApJ...857...39M |s2cid=55891098 }}
- {{cite journal |last1=Morris |first1=Brett M. |last2=Agol |first2=Eric |last3=Hebb |first3=Leslie |last4=Hawley |first4=Suzanne L. |display-authors=4|last5=Gillon |first5=Michaël |last6=Ducrot |first6=Elsa |last7=Delrez |first7=Laetitia |last8=Ingalls |first8=James |last9=Demory |first9=Brice-Olivier |title=Non-detection of Contamination by Stellar Activity in the Spitzer Transit Light Curves of TRAPPIST-1 |journal=The Astrophysical Journal |date=17 August 2018 |volume=863 |issue=2 |pages=L32 |doi=10.3847/2041-8213/aad8aa |arxiv=1808.02808 |bibcode=2018ApJ...863L..32M |s2cid=53332500 |language=en}}
- {{Cite journal|last1=Mullan|first1=D. J.|last2=Bais|first2=H. P.|date=27 September 2018|title=Photosynthesis on a Planet Orbiting an M Dwarf: Enhanced Effectiveness during Flares|journal=The Astrophysical Journal|language=en|volume=865|issue=2|pages=101|doi=10.3847/1538-4357/aadfd1|arxiv=1807.05267|bibcode=2018ApJ...865..101M|s2cid=119073856|issn=1538-4357}}
- {{cite journal |last1=Mullan |first1=D. J. |last2=Paudel |first2=R. R. |title=Origin of Radio-quiet Coronal Mass Ejections in Flare Stars |journal=The Astrophysical Journal |date=27 February 2019 |volume=873 |issue=1 |pages=1 |doi=10.3847/1538-4357/ab041b |arxiv=1902.00810 |bibcode=2019ApJ...873....1M |s2cid=119420075 |language=en}}
- {{cite web|url=https://nationalmaglab.org/about-the-maglab/around-the-lab/maglab-dictionary/tesla/|access-date=16 May 2023|date=18 November 2022|title=Tesla Definition|publisher=National High Magnetic Field Laboratory|ref={{harvid|MagLab|2022}}}}
- {{cite journal |last1=Navarro |first1=Thomas |last2=Merlis |first2=Timothy M. |last3=Cowan |first3=Nicolas B. |last4=Gomez |first4=Natalya |title=Atmospheric Gravitational Tides of Earth-like Planets Orbiting Low-mass Stars |journal=The Planetary Science Journal |date=15 July 2022 |volume=3 |issue=7 |pages=162 |doi=10.3847/PSJ/ac76cd |arxiv=2207.06974 |bibcode=2022PSJ.....3..162N |s2cid=250526799 |url=https://iopscience.iop.org/article/10.3847/PSJ/ac76cd/meta |language=en |issn=2632-3338}}
- {{cite journal |last1=Ogihara |first1=Masahiro |last2=Kokubo |first2=Eiichiro |last3=Nakano |first3=Ryuunosuke |last4=Suzuki |first4=Takeru K. |title=Rapid-then-slow migration reproduces mass distribution of TRAPPIST-1 system |journal=Astronomy & Astrophysics |date=1 February 2022 |volume=658 |pages=A184 |doi=10.1051/0004-6361/202142354 |arxiv=2201.08840 |bibcode=2022A&A...658A.184O |s2cid=246210342 |url=https://www.aanda.org/articles/aa/abs/2022/02/aa42354-21/aa42354-21.html |language=en |issn=0004-6361}}
- {{cite journal |last1=O'Malley-James |first1=Jack T. |last2=Kaltenegger |first2=L. |title=UV surface habitability of the TRAPPIST-1 system |journal=Monthly Notices of the Royal Astronomical Society: Letters |date=July 2017 |volume=469 |issue=1 |pages=L26–L30 |doi=10.1093/mnrasl/slx047}}
- {{cite journal |last1=O'Malley-James |first1=Jack T |last2=Kaltenegger |first2=Lisa |title=Biofluorescent Worlds – II. Biological fluorescence induced by stellar UV flares, a new temporal biosignature |journal=Monthly Notices of the Royal Astronomical Society |date=1 October 2019 |volume=488 |issue=4 |pages=4530–4545 |doi=10.1093/mnras/stz1842 }}
- {{cite journal |last1=Ormel |first1=Chris W. |last2=Liu |first2=Beibei |last3=Schoonenberg |first3=Djoeke |title=Formation of TRAPPIST-1 and other compact systems |journal=Astronomy & Astrophysics |date=1 August 2017 |volume=604 |pages=A1 |doi=10.1051/0004-6361/201730826 |arxiv=1703.06924 |bibcode=2017A&A...604A...1O |s2cid=4606360 |language=en |issn=0004-6361}}
- {{cite book |last1=Paladini |first1=Stefania |title=The New Frontiers of Space: Economic Implications, Security Issues and Evolving Scenarios |date=2019 |isbn=978-3-030-19941-8}}
- {{cite journal |title=Churchill's big idea |journal=Physics World |date=April 2017 |volume=30 |issue=4 |pages=3 |doi=10.1088/2058-7058/30/4/1 |ref={{harvid|Physics World|2017}} |language=en}}
- {{cite journal |last1=Pidhorodetska |first1=Daria |last2=Fauchez |first2=Thomas J. |last3=Villanueva |first3=Geronimo L. |last4=Domagal-Goldman |first4=Shawn D. |display-authors=4|last5=Kopparapu |first5=Ravi K. |title=Detectability of Molecular Signatures on TRAPPIST-1e through Transmission Spectroscopy Simulated for Future Space-based Observatories |journal=The Astrophysical Journal |date=July 2020 |volume=898 |issue=2 |pages=L33 |doi=10.3847/2041-8213/aba4a1 |arxiv=2001.01338 |bibcode=2020ApJ...898L..33P |hdl=11603/20595 |s2cid=209862793 |url=https://iopscience.iop.org/article/10.3847/2041-8213/aba4a1/meta |language=en |issn=2041-8205}}
- {{cite journal |last1=Pierrehumbert |first1=Raymond T. |last2=Hammond |first2=Mark |title=Atmospheric Circulation of Tide-Locked Exoplanets |journal=Annual Review of Fluid Mechanics |date=5 January 2019 |volume=51 |issue=1 |pages=275–303 |doi=10.1146/annurev-fluid-010518-040516 |bibcode=2019AnRFM..51..275P |s2cid=125645319 |language=en |issn=0066-4189}}
- {{cite journal |last1=Pinchuk |first1=Pavlo |last2=Margot |first2=Jean-Luc |last3=Greenberg |first3=Adam H. |last4=Ayalde |first4=Thomas |display-authors=4|last5=Bloxham |first5=Chad |last6=Boddu |first6=Arjun |last7=Chinchilla-Garcia |first7=Luis Gerardo |last8=Cliffe |first8=Micah |last9=Gallagher |first9=Sara |last10=Hart |first10=Kira |last11=Hesford |first11=Brayden |last12=Mizrahi |first12=Inbal |last13=Pike |first13=Ruth |last14=Rodger |first14=Dominic |last15=Sayki |first15=Bade |last16=Schneck |first16=Una |last17=Tan |first17=Aysen |last18=Xiao |first18=Yinxue "Yolanda" |last19=Lynch |first19=Ryan S. |title=A Search for Technosignatures from TRAPPIST-1, LHS 1140, and 10 Planetary Systems in the Kepler Field with the Green Bank Telescope at 1.15–1.73 GHz |journal=The Astronomical Journal |date=19 February 2019 |volume=157 |issue=3 |pages=122 |doi=10.3847/1538-3881/ab0105 |arxiv=1901.04057 |bibcode=2019AJ....157..122P |s2cid=113397518 |language=en}}
- {{cite journal |last1=Pineda |first1=J. Sebastian |last2=Hallinan |first2=Gregg |title=A Deep Radio Limit for the TRAPPIST-1 System |journal=The Astrophysical Journal |date=24 October 2018 |volume=866 |issue=2 |pages=155 |doi=10.3847/1538-4357/aae078 |arxiv=1806.00480 |bibcode=2018ApJ...866..155P |s2cid=119209821 |language=en}}
- {{Cite journal |last1=Quick |first1=Lynnae C. |last2=Roberge |first2=Aki |last3=Mlinar |first3=Amy Barr |last4=Hedman |first4=Matthew M. |date=August 2020|title=Forecasting Rates of Volcanic Activity on Terrestrial Exoplanets and Implications for Cryovolcanic Activity on Extrasolar Ocean Worlds |url=https://iopscience.iop.org/article/10.1088/1538-3873/ab9504 |journal=Publications of the Astronomical Society of the Pacific |volume=132 |issue=1014 |pages=084402 |doi=10.1088/1538-3873/ab9504 |bibcode=2020PASP..132h4402Q |s2cid=219964895 |issn=0004-6280}}
- {{cite journal |last1=Radnóti |first1=Katalin |title=Exoplanets in physics classes |journal=Journal of Physics: Conference Series |date=1 May 2021 |volume=1929 |issue=1 |pages=012015 |doi=10.1088/1742-6596/1929/1/012015 |bibcode=2021JPhCS1929a2015R |s2cid=235591431 |language=en}}
- {{cite journal |last1=Ranjan |first1=Sukrit |last2=Wordsworth |first2=Robin |last3=Sasselov |first3=Dimitar D. |title=The Surface UV Environment on Planets Orbiting M Dwarfs: Implications for Prebiotic Chemistry and the Need for Experimental Follow-up |journal=The Astrophysical Journal |date=11 July 2017 |volume=843 |issue=2 |pages=110 |doi=10.3847/1538-4357/aa773e |arxiv=1705.02350 |bibcode=2017ApJ...843..110R |s2cid=119502156 |language=en |issn=1538-4357}}
- {{cite journal |last1=Raymond |first1=Sean N. |last2=Izidoro |first2=Andre |last3=Bolmont |first3=Emeline |last4=Dorn |first4=Caroline |display-authors=4|last5=Selsis |first5=Franck |last6=Turbet |first6=Martin |last7=Agol |first7=Eric |last8=Barth |first8=Patrick |last9=Carone |first9=Ludmila |last10=Dasgupta |first10=Rajdeep |last11=Gillon |first11=Michael |last12=Grimm |first12=Simon L. |title=An upper limit on late accretion and water delivery in the TRAPPIST-1 exoplanet system |journal=Nature Astronomy |date=25 November 2021 |volume=6 |pages=80–88 |doi=10.1038/s41550-021-01518-6 |arxiv=2111.13351 |s2cid=244668317 |language=en |issn=2397-3366}}
- {{cite web |title=Red Dwarf |url=https://astronomy.swin.edu.au/cosmos/r/red+dwarf |website=COSMOS - The SAO Encyclopedia of Astronomy |access-date=31 July 2022|ref={{harvid|The SAO Encyclopedia of Astronomy|2022|loc=Red Dwarf}}|publisher=Swinburne University of Technology}}
- {{cite conference|conference=The 24th International Conference on Auditory Display (ICAD 2018)|date=June 2018|location=Michigan Technological University|title=PLANETHESIZER: SONIFICATION CONCERT|first=Adrián García|last=Riber|url=http://icad2018.icad.org/wp-content/uploads/2018/06/ICAD2018_paper_43.pdf}}
- {{cite journal |last1=Rinaldi |first1=David |last2=Núñez Ferrer |first2=Jorge |title=Cheers to a new solar system – and EU investment strategy. CEPS Commentary, 7 March 2017 |website=CEPS |date=March 2017 |url=http://aei.pitt.edu/85024/}}
- {{Cite journal |last1=Roettenbacher |first1=Rachael M. |last2=Kane |first2=Stephen R. |date=14 December 2017 |title=The Stellar Activity of TRAPPIST-1 and Consequences for the Planetary Atmospheres |url=https://iopscience.iop.org/article/10.3847/1538-4357/aa991e |journal=The Astrophysical Journal |volume=851 |issue=2 |pages=77 |doi=10.3847/1538-4357/aa991e |arxiv=1711.02676 |bibcode=2017ApJ...851...77R |s2cid=73535657 |issn=1538-4357}}
- {{cite journal |last1=Rushby |first1=Andrew J. |last2=Shields |first2=Aomawa L. |last3=Wolf |first3=Eric T. |last4=Laguë |first4=Marysa |display-authors=4|last5=Burgasser |first5=Adam |title=The Effect of Land Albedo on the Climate of Land-dominated Planets in the TRAPPIST-1 System |journal=The Astrophysical Journal |date=26 November 2020 |volume=904 |issue=2 |pages=124 |doi=10.3847/1538-4357/abbe04 |arxiv=2011.03621 |bibcode=2020ApJ...904..124R |s2cid=226281770 |language=en}}
- {{cite journal |last1=Sakaue |first1=Takahito |last2=Shibata |first2=Kazunari |title=An M Dwarf's Chromosphere, Corona, and Wind Connection via Nonlinear Alfvén Waves |journal=The Astrophysical Journal |date=1 September 2021 |volume=919 |issue=1 |pages=29 |doi=10.3847/1538-4357/ac0e34 |arxiv=2106.12752 |bibcode=2021ApJ...919...29S |s2cid=235624132 |language=en}}
- {{cite journal |last1=Samara |first1=Evangelia |last2=Patsourakos |first2=Spiros |last3=Georgoulis |first3=Manolis K. |title=A Readily Implemented Atmosphere Sustainability Constraint for Terrestrial Exoplanets Orbiting Magnetically Active Stars |journal=The Astrophysical Journal Letters |date=1 March 2021 |volume=909 |issue=1 |pages=L12 |doi=10.3847/2041-8213/abe416 |arxiv=2102.07837 |bibcode=2021ApJ...909L..12S |s2cid=231933691 |language=en}}
- {{cite journal |last1=Schlichting |first1=Hilke E. |last2=Young |first2=Edward D. |title=Chemical Equilibrium between Cores, Mantles, and Atmospheres of Super-Earths and Sub-Neptunes and Implications for Their Compositions, Interiors, and Evolution |journal=The Planetary Science Journal |date=1 May 2022 |volume=3 |issue=5 |pages=127 |doi=10.3847/psj/ac68e6 |arxiv=2107.10405 |bibcode=2022PSJ.....3..127S |s2cid=236171388 |url=https://iopscience.iop.org/article/10.3847/PSJ/ac68e6/pdf |language=en}}
- {{cite journal |last1=Schneider |first1=J. |last2=Dedieu |first2=C. |last3=Sidaner |first3=P. Le |last4=Savalle |first4=R. |last5=Zolotukhin |first5=I. |title=Defining and cataloging exoplanets: the exoplanet.eu database |journal=Astronomy & Astrophysics |date=1 August 2011 |volume=532 |pages=A79 |doi=10.1051/0004-6361/201116713 |arxiv=1106.0586 |bibcode=2011A&A...532A..79S |s2cid=55994657 |url=https://www.aanda.org/articles/aa/abs/2011/08/aa16713-11/aa16713-11.html |language=en |issn=0004-6361}}
- {{cite journal |last1=Schwieterman |first1=Edward W. |last2=Reinhard |first2=Christopher T. |last3=Olson |first3=Stephanie L. |last4=Harman |first4=Chester E. |display-authors=4|last5=Lyons |first5=Timothy W. |title=A Limited Habitable Zone for Complex Life |journal=The Astrophysical Journal |date=10 June 2019 |volume=878 |issue=1 |pages=19 |doi=10.3847/1538-4357/ab1d52 |arxiv=1902.04720 |bibcode=2019ApJ...878...19S |s2cid=118948604 |language=en}}
- {{cite book |title=The Euroschool on Exotic Beams. Vol. 5 |series=Lecture Notes in Physics |date=2018 |volume=948 |doi=10.1007/978-3-319-74878-8 |isbn=978-3-319-74878-8 |s2cid=220615062 |ref={{harvid|Euroschool|2018}} |language=en-gb|editor-last1=Scheidenberger|editor-first1=Christoph |editor-last2=Pfützner|editor-first2=Marek }}
- {{cite book |last1=Sein |first1=Alexandr |last2=Duncan |first2=Colton |last3=Zhong |first3=Patrick |last4=Koock |first4=Elise |display-authors=4|last5=Lee |first5=Waylon |last6=Jakubik |first6=Connor |last7=McHenry |first7=Neil |last8=Bruno |first8=Ashley |last9=Chamitoff |first9=Gregory |title=STEM Education Through Virtual Space System Design Competitions |journal=AIAA Scitech 2021 Forum |year=2021 |doi=10.2514/6.2021-0481 |publisher=American Institute of Aeronautics and Astronautics|isbn=978-1-62410-609-5 |s2cid=234272238 }}
- {{cite journal |last1=Shields |first1=Aomawa L. |last2=Ballard |first2=Sarah |last3=Johnson |first3=John Asher |title=The habitability of planets orbiting M-dwarf stars |journal=Physics Reports |date=5 December 2016 |volume=663 |pages=1–38 |doi=10.1016/j.physrep.2016.10.003 |arxiv=1610.05765 |bibcode=2016PhR...663....1S |s2cid=119248081 |language=en |issn=0370-1573}}
- {{cite journal |last1=Shields |first1=Aomawa L. |last2=Carns |first2=Regina C. |title=Hydrohalite Salt-albedo Feedback Could Cool M-dwarf Planets |journal=The Astrophysical Journal |date=25 October 2018 |volume=867 |issue=1 |pages=11 |doi=10.3847/1538-4357/aadcaa |arxiv=1808.09977 |bibcode=2018ApJ...867...11S |s2cid=76652437 |language=en}}
- {{cite report|last1=Short|first1=Kendra|first2=Karl|last2=Stapelfeldt|title=Exoplanet exploration program update|year=2017|url=https://trs.jpl.nasa.gov/bitstream/handle/2014/48124/CL%2317-2776.pdf?sequence=1|archive-url=https://web.archive.org/web/20211209151630/https://trs.jpl.nasa.gov/bitstream/handle/2014/48124/CL%2317-2776.pdf|archive-date=9 December 2021|url-status=dead|publisher=NASA Exoplanet Exploration Program}}
- {{cite journal |last1=Sleator |first1=Roy D. |last2=Smith |first2=Niall |title=TRAPPIST-1: The dawning of the age of Aquarius |journal=Bioengineered |date=4 May 2017 |volume=8 |issue=3 |pages=194–195 |doi=10.1080/21655979.2017.1306998 |pmid=28324663 |pmc=5470511 |issn=2165-5979}}
- {{cite journal |last1=Snellen |first1=Ignas A. G. |title=Earth's seven sisters |journal=Nature |date=February 2017 |volume=542 |issue=7642 |pages=421–422 |doi=10.1038/542421a |pmid=28230129 |hdl=1887/75076 |s2cid=205092857 |language=en |issn=1476-4687}}
- {{Cite journal|last=Srinivas|first=Susheela|date=August 2017|title=Are There Habitable Worlds Out There? – The Quest for Exoplanets|url=http://nopr.niscpr.res.in/bitstream/123456789/42535/1/SR%2054%288%29%2014-20.pdf|journal=Science Reporter |volume=54 |issue=8 |pages=14–20 |language=en-US|issn=0036-8512}}
- {{Cite book|last=Stevenson|first=David S.|title=Red Dwarfs: Their Geological, Chemical, and Biological Potential for Life|date=2019|publisher=Springer International Publishing|isbn=978-3-030-25549-7|language=en|doi=10.1007/978-3-030-25550-3|s2cid=203546646}}
- {{cite journal |last1=Krissansen-Totton |first1=J. |last2=Fortney |first2=J. J. |title=Predictions for Observable Atmospheres of Trappist-1 Planets from a Fully Coupled Atmosphere–Interior Evolution Model |journal=The Astrophysical Journal |date=1 July 2022 |volume=933 |issue=1 |pages=115 |doi=10.3847/1538-4357/ac69cb |arxiv=2207.04164 |bibcode=2022ApJ...933..115K |s2cid=250374670 |url=https://iopscience.iop.org/article/10.3847/1538-4357/ac69cb/meta |language=en}}
- {{cite journal |last1=Turbet |first1=Martin |last2=Bolmont |first2=Emeline |last3=Leconte |first3=Jeremy |last4=Forget |first4=François |display-authors=4|last5=Selsis |first5=Franck |last6=Tobie |first6=Gabriel |last7=Caldas |first7=Anthony |last8=Naar |first8=Joseph |last9=Gillon |first9=Michaël |title=Modeling climate diversity, tidal dynamics and the fate of volatiles on TRAPPIST-1 planets |journal=Astronomy & Astrophysics |date=1 April 2018 |volume=612 |pages=A86 |doi=10.1051/0004-6361/201731620 |arxiv=1707.06927 |bibcode=2018A&A...612A..86T |s2cid=53990543 |language=en |issn=0004-6361}}
- {{cite journal |last1=Turbet |first1=Martin |last2=Bolmont |first2=Emeline |last3=Bourrier |first3=Vincent |last4=Demory |first4=Brice-Olivier |display-authors=4|last5=Leconte |first5=Jérémy |last6=Owen |first6=James |last7=Wolf |first7=Eric T. |title=A Review of Possible Planetary Atmospheres in the TRAPPIST-1 System |journal=Space Science Reviews |date=August 2020 |volume=216 |issue=5 |pages=100 |doi=10.1007/s11214-020-00719-1 |pmid=32764836 |pmc=7378127 |arxiv=2007.03334 |bibcode=2020SSRv..216..100T }}
- {{cite journal |last1=Wang |first1=Jessie |title=Law of Gravity Blurred by Perturbed Planetary Orbits for Alien Observers |journal=Journal of Physics: Conference Series |date=1 June 2022 |volume=2287 |issue=1 |pages=012039 |doi=10.1088/1742-6596/2287/1/012039 |bibcode=2022JPhCS2287a2039W |s2cid=250290787 |url=https://iopscience.iop.org/article/10.1088/1742-6596/2287/1/012039/meta |language=en}}
- {{cite web|url=https://scienceworld.wolfram.com/astronomy/CelestialEquator.html|title=Celestial Equator|access-date=16 November 2021|first=Eric W.|last=Weisstein|author-link=Eric W. Weisstein|publisher=Wolfram Research|year=2007|website=Eric Weisstein's World of Science}}
- {{cite journal |last1=Wheatley |first1=Peter J. |last2=Louden |first2=Tom |last3=Bourrier |first3=Vincent |last4=Ehrenreich |first4=David |display-authors=4|last5=Gillon |first5=Michaël |title=Strong XUV irradiation of the Earth-sized exoplanets orbiting the ultracool dwarf TRAPPIST-1 |journal=Monthly Notices of the Royal Astronomical Society: Letters |date=11 February 2017 |volume=465 |issue=1 |pages=L74–L78 |arxiv=1605.01564 |bibcode=2017MNRAS.465L..74w |doi=10.1093/mnrasl/slw192 |s2cid=30087787 }}
- {{cite journal |last1=Wilson |first1=David J. |last2=Froning |first2=Cynthia S. |last3=Duvvuri |first3=Girish M. |last4=France |first4=Kevin |display-authors=4|last5=Youngblood |first5=Allison |last6=Schneider |first6=P. Christian |last7=Berta-Thompson |first7=Zachory |last8=Brown |first8=Alexander |last9=Buccino |first9=Andrea P. |last10=Hawley |first10=Suzanne |last11=Irwin |first11=Jonathan |last12=Kaltenegger |first12=Lisa |last13=Kowalski |first13=Adam |last14=Linsky |first14=Jeffrey |last15=Parke Loyd |first15=R. O. |last16=Miguel |first16=Yamila |last17=Pineda |first17=J. Sebastian |last18=Redfield |first18=Seth |last19=Roberge |first19=Aki |last20=Rugheimer |first20=Sarah |last21=Tian |first21=Feng |last22=Vieytes |first22=Mariela |title=The Mega-MUSCLES Spectral Energy Distribution of TRAPPIST-1 |journal=The Astrophysical Journal |date=1 April 2021 |volume=911 |issue=1 |pages=18 |doi=10.3847/1538-4357/abe771 |arxiv=2102.11415 |bibcode=2021ApJ...911...18W |s2cid=232014177 |language=en}}
- {{cite journal |last1=Wolf |first1=Eric T. |title=Assessing the Habitability of the TRAPPIST-1 System Using a 3D Climate Model |journal=The Astrophysical Journal |date=6 April 2017 |volume=839 |issue=1 |pages=L1 |doi=10.3847/2041-8213/aa693a |arxiv=1703.05815 |bibcode=2017ApJ...839L...1W |s2cid=119082049 |language=en}}
- {{cite journal |last1=Wunderlich |first1=Fabian |last2=Scheucher |first2=Markus |last3=Godolt |first3=M. |last4=Grenfell |first4=J. L. |display-authors=4|last5=Schreier |first5=F. |last6=Schneider |first6=P. C. |last7=Wilson |first7=D. J. |last8=Sánchez-López |first8=A. |last9=López-Puertas |first9=M. |last10=Rauer |first10=H. |title=Distinguishing between Wet and Dry Atmospheres of TRAPPIST-1 e and f |journal=The Astrophysical Journal |date=29 September 2020 |volume=901 |issue=2 |pages=126 |doi=10.3847/1538-4357/aba59c |arxiv=2006.11349 |bibcode=2020ApJ...901..126W |s2cid=219966834 |language=en}}
- {{cite journal |last1=Valio |first1=Adriana |last2=Estrela |first2=Raissa |last3=Cabral |first3=Luisa |last4=Grangeiro |first4=Abel |title=The biological impact of superflares on planets in the Habitable Zone |journal=Proceedings of the International Astronomical Union |date=August 2018 |volume=14 |issue=S345 |pages=176–180 |doi=10.1017/S1743921319002035 |s2cid=216905441 |language=en |issn=1743-9213}}
- {{cite journal |last1=Brown |first1=A. G. A. |last2=Vallenari |first2=A. |last3=Prusti |first3=T. |last4=de Bruijne |first4=J. H. J. |display-authors=1 |title=Gaia Early Data Release 3: Summary of the contents and survey properties |journal=Astronomy & Astrophysics |date=2021 |volume=649 |pages=A1 |arxiv=2012.01533 |bibcode=2021A&A...649A...1G |doi=10.1051/0004-6361/202039657e |s2cid=227254300}}
- {{cite journal |last1=Van Hoolst |first1=Tim |last2=Noack |first2=Lena |last3=Rivoldini |first3=Attilio |title=Exoplanet interiors and habitability |journal=Advances in Physics: X |date=1 January 2019 |volume=4 |issue=1 |pages=1630316 |doi=10.1080/23746149.2019.1630316 |bibcode=2019AdPhX...430316V |s2cid=198417434 }}
- {{cite journal |last1=Veras |first1=Dimitri |last2=Breedt |first2=Elmé |title=Eclipse, transit and occultation geometry of planetary systems at exo-syzygy |journal=Monthly Notices of the Royal Astronomical Society |date=1 July 2017 |volume=468 |issue=3 |pages=2672–2683 |doi=10.1093/mnras/stx614 |issn=0035-8711}}
- {{Cite journal |last1=Vida |first1=Krisztián |last2=Kővári |first2=Zsolt |last3=Pál |first3=András |last4=Oláh |first4=Katalin |display-authors=4|last5=Kriskovics |first5=Levente |title=Frequent flaring in the TRAPPIST-1 system – unsuited for life? |journal=The Astrophysical Journal |date=2 June 2017 |volume=841 |issue=2 |pages=124 |arxiv=1703.10130 |doi=10.3847/1538-4357/aa6f05 |bibcode=2017ApJ...841..124V |s2cid=118827117 |language=en}}
- {{Cite journal |last1=Vinson |first1=Alec M. |last2=Tamayo |first2=Daniel |last3=Hansen |first3=Brad M. S. |title=The Chaotic Nature of TRAPPIST-1 Planetary Spin States |journal=Monthly Notices of the Royal Astronomical Society |date=1 August 2019 |volume=488 |issue=4 |pages=5739–5747 |arxiv=1905.11419 |bibcode=2019MNRAS.488.5739V |doi=10.1093/mnras/stz2113 |s2cid=167217467 |language=en}}
- {{cite conference |last1=Yang |first1=J. |last2=Ji |first2=W. |title=Proxima b, TRAPPIST 1e, and LHS 1140b: Increased Ice Coverages by Sea Ice Dynamics |journal=AGU Fall Meeting Abstracts |date=1 December 2018 |volume=2018 |pages=P43G–3826 |bibcode=2018AGUFM.P43G3826Y |conference=American Geophysical Union, Fall Meeting 2018|location=Washington DC}}
- {{cite journal |last1=Zanazzi |first1=J. J. |last2=Lai |first2=Dong |title=Triaxial deformation and asynchronous rotation of rocky planets in the habitable zone of low-mass stars |journal=Monthly Notices of the Royal Astronomical Society |date=11 August 2017 |volume=469 |issue=3 |pages=2879–2885 |arxiv=1702.07327 |bibcode=2017MNRAS.469.2879Z |doi=10.1093/mnras/stx1076 |s2cid=119430179 |issn=0035-8711}}
- {{cite journal |last1=Zanazzi |first1=J. J. |last2=Triaud |first2=Amaury H. M. J. |title=The ability of significant tidal stress to initiate plate tectonics |journal=Icarus |date=1 June 2019 |volume=325 |pages=55–66 |arxiv=1711.09898 |doi=10.1016/j.icarus.2019.01.029 |bibcode=2019Icar..325...55Z |s2cid=96450290 |language=en |issn=0019-1035}}
- {{Cite journal|last=Zhang|first=Xi|date=July 2020|title=Atmospheric regimes and trends on exoplanets and brown dwarfs|journal=Research in Astronomy and Astrophysics|language=en|volume=20|issue=7|pages=099|doi=10.1088/1674-4527/20/7/99|arxiv=2006.13384|bibcode=2020RAA....20...99Z|s2cid=220042096|issn=1674-4527}}
- {{cite journal |last1=Zhang |first1=Zhanbo |last2=Zhou |first2=Yifan |last3=Rackham |first3=Benjamin V. |last4=Apai |first4=Dániel |title=The Near-infrared Transmission Spectra of TRAPPIST-1 Planets b, c, d, e, f, and g and Stellar Contamination in Multi-epoch Transit Spectra |journal=The Astronomical Journal |date=4 October 2018 |volume=156 |issue=4 |pages=178 |doi=10.3847/1538-3881/aade4f |arxiv=1802.02086 |bibcode=2018AJ....156..178Z |hdl=10150/631598 |s2cid=118938032 |language=en}}
{{refend}}
Further reading
- {{cite journal |last1=Arcand |first1=Kimberly K. |last2=Price |first2=Sara R. |last3=Watzke |first3=Megan |title=Holding the Cosmos in Your Hand: Developing 3D Modeling and Printing Pipelines for Communications and Research |journal=Frontiers in Earth Science |date=2020 |volume=8 |pages=541 |doi=10.3389/feart.2020.590295 |arxiv=2012.02789 |bibcode=2020FrEaS...8..541A |issn=2296-6463|ref=none|doi-access=free }}
- {{cite report |last1=Dzombeta |first1=Krstinja |last2=Percy |first2=John |title=Flare Stars: A Short Review |date=31 October 2019 |url=https://tspace.library.utoronto.ca/handle/1807/97060 |language=en-ca|ref=none}}
- {{cite journal |last1=Fauchez |first1=Thomas J. |last2=Turbet |first2=Martin |last3=Wolf |first3=Eric T. |last4=Boutle |first4=Ian |display-authors=4|last5=Way |first5=Michael J. |last6=Del Genio |first6=Anthony D. |last7=Mayne |first7=Nathan J. |last8=Tsigaridis |first8=Konstantinos |last9=Kopparapu |first9=Ravi K. |last10=Yang |first10=Jun |last11=Forget |first11=Francois |last12=Mandell |first12=Avi |last13=Domagal Goldman |first13=Shawn D. |title=TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI): motivations and protocol version 1.0 |journal=Geoscientific Model Development |date=21 February 2020 |volume=13 |issue=2 |pages=707–716 |doi=10.5194/gmd-13-707-2020 |arxiv=2002.10950 |bibcode=2020GMD....13..707F |s2cid=211296491 |url=https://gmd.copernicus.org/articles/13/707/2020/gmd-13-707-2020.html |language=English |issn=1991-959X|ref=none}}
External links
{{Commons category}}
- {{cite web |url=http://www.trappist.one/ |website=TRAPPIST.one |title=The discovery team's official website}}
- {{cite web |title=Ultracool dwarf with planets |series=ESOcast 83 |publisher=European Southern Observatory |url=http://www.eso.org/public/videos/eso1615a/}}
{{TRAPPIST-1}}
{{Stars of Aquarius|collapsed=yes}}
{{2016 in space}}
{{2017 in space}}
{{Portal bar|Astronomy|Biology|Space|Star}}