User:Buaidh/Test

Timeline of Earth measurement

This is a timeline of our understanding of the shape and size of the planet Earth from antiquity to modern scientific measurements. The Earth has the general shape of a sphere, but it is oblate due to the revolution of the planet, and it is further a lumpy oblate spheroid because neither the interior nor the surface of the Earth are uniform.

Shape

From the apparent disappearance of mountain summits, islands, and boats below the horizon as their distance from the viewer increased, many ancient peoples understood that the Earth had some sort of positive curvature. Observing the ball-like appearance of the moon, many ancient peoples thought that the Earth must have a similar shape. Around 500 BCE, Greek mathematician Pythagoras of Samos taught that a sphere is the "perfect form" and that the Earth is in the form of a sphere because "that which the gods create must be perfect." Although there were advocates for a flat Earth, dome Earth, cylindrical Earth, etc., most ancient and medieval philosophers argued that the Earth must have a spherical shape.

In October 1666, English polymath Isaac Newton published De analysi per aequationes numero terminorum infinitas explaining his calculus. In November 1687, Newton published Philosophiæ Naturalis Principia Mathematica explaining his three laws of motion and his law of universal gravitation. Newton realized that the rotation of the Earth must have forced it into the shape of an oblate spheroid. Newton made the assumption that the Earth was an oblate spheroid (correct) of essentially uniform density (incorrect) and used the newly published work of Jean Richer to calculate the oblateness of the Earth from the ratio of the force of gravity to the centrifugal force of the rotation of the Earth at its equator as +0.434%, remarkably accurate given his assumptions.{{cite web|url=https://www.aps.org/apsnews/2022/10/newton-earth-shape|title=How Newton Derived the Shape of Earth|first=Miguel|last=Ohnesorge|publisher=American Physical Society|date=October 13, 2022|access-date=December 13, 2024}}

In 1713, Giovanni Domenico Cassini, director of the Paris Observatory and astronomer and astrologer to King Louis XIV, rejected Newton's theory of universal gravitation, after his (erroneous) measurements indicated that the Earth was a prolate spheroid. This dispute raged until the French Geodesic Mission to the Equator of 1735-1751 and the French Geodesic Mission to Lapland of 1736–1737 decided the issue in favor of Newton and an oblate spheroid. In 1738, Pierre Louis Maupertuis of the Lapland expedition published the first measurement of Earth oblateness as +0.524%. Modern measurements of Earth oblateness are +0.335 281% ± 0.000 001%.

Size

The pronouncement by Pythagoras (c.570-495 BCE) that the Earth was a sphere prompted his followers to speculate about the size of the Earth sphere. Aristotle (384–322 BCE) writes in De caelo,{{cite web|url=https://archive.org/details/decaeloleofric00arisuoft/decaeloleofric00arisuoft/page/n101/mode/2up|pp=297b|title=De caelo|last=Aristotle|editor-first1=John Leofric|editor-last1=Stocks|publisher=Oxford, Clarendon Press|year=1922|access-date=December 15, 2024}} writes that "those mathematicians who try to calculate the size of the earth’s circumference arrive at the figure 400,000 stadia." Archimedes (c.287-212 BCE) felt that the Earth must be smaller at about 300,000 stadia in circumference. These were merely informed guesses. Since the length of a stadion varied from place to place and time to time, it is difficult to say how much these guesses overstated the size of the Earth.

Eratosthenes (c.276-194 BCE) was the first to use empirical observation to calculate the circumference of the Earth. Although Eratosthenes made errors, his errors tended to cancel out to produce a remarkably prescient result. If Eratosthenes used a stadion of between {{convert|150.9|and|166.8|m|ft|0|abbr=off|sp=us}}, his 252,000-stadion circumference was within 5% of the modern accepted Earth volumetric circumference.

Subsequent estimates employed various methods to calculate the Earth's circumference with varying degrees of success. Some historians believe that the ever optimistic Christopher Columbus (1451–1506) may have used the obsolete 180,000-stadion circumference of Ptolemy (c.100-170) to justify his proposed voyage to India. Columbus was fortunate that the Antilles were in his way to India.

It was not until the development of the theodolite in 1576 and the refracting telescope in 1608 that surveying and astronomical instruments attained sufficient accuracy to make precise measurements of the earth's size. The acceptance of Newton's oblate spheroid in the 18th century opened the new era of Geodesy. Geodesy has been revolutionized by the development of the first practical atomic clock in 1955, by the launch of the first artificial satellite in 1957, and by the development of the first laser in 1960.

WGS 84

World Geodetic System 1984 (WGS 84) oblate spheroid model:

:equitorial circumference{{efn|name=equitorial circumference|The equitorial circumference of a spheroid is measured around its equator.}} = 40,075.016 69 km = 24,901.460 90 miles

:meridional circumference{{efn|name=meridional circumference|The meridional or polar circumference of a spheroid is measured through its poles.}} = 40,007.862 92 km = 24,859.733 48 miles

:volumetric circumference{{efn|name=volumetric circumference|The volumetric circumference of an ellipsoid is the circumference of a sphere of equal volume as the ellipsoid.}} = 40,030.178 56 km = 24,873.599 77 miles

:oblateness{{efn|name=oblateness|The oblateness of a spheroid is the difference of its equitorial radius minus its polar radius divided by its equitorial radius.}} = +0.335 281 066%

:surface area = 510,065,622 km2 = 196,937,438 square miles

:volume = 1,083,207,320,000 km3 = 259,875,256,000 cubic miles

Timeline

class="wikitable sortable plainrowheaders" style="margin:auto;"

|+Some historical estimates of the size of the Earth

!scope=col rowspan=2|Estimates of the Earth as a sphere{{efn|name=ancient lengths|Ancient units of length such as the cubit, stadion, yojana, Roman mile, Arabic mile, Italian mile, or toise varied considerably by author, location, era, and use. The conversion to modern units used here are only approximations. Other assumptions will yield substantially different results. (Some modern authors will use a conversion that will best illustrate their point.)}}

!scope=col rowspan=2|Year

!scope=col colspan=2|Estimate

!scope=col colspan=4|Deviation from WGS 84{{efn|name=sphere|Spherical deviations are calculated for a sphere of the same volume as the World Geodetic System 1984 (WGS 84) oblate spheriod model (1,083,207,320,000 km3).}}

scope=col colspan=2|Circumference

!scope=col colspan=2|Circumference

!scope=col rowspan=1|Surface area

!scope=col rowspan=1|Volume

scope=row|Plato{{cite web|url=https://archive.org/details/j.-n.-findlay-plato-the-written-and-unwritten-doctrines|title=Plato: The Written and Unwritten Doctrines|first=J.N.|last=Findlay|publisher=Routledge & Keegan Paul|location=London|year=1974|access-date=December 15, 2024}}{{efn|name=Plato|In De caelo, Aristotle writes that "those mathematicians who try to calculate the size of the earth’s circumference arrive at the figure 400,000 stadia." Prominent among those mathematicians was his tutor Plato.}}

|align=center|~387 BCE

|rowspan=2 colspan=2 align=center|400,000 stadia
~64,000 km{{efn|name=stadion|The stadion was a unit of length used in ancient Greece that could range from about {{convert|150|to|210|m|ft|0|abbr=off|sp=us}}. This calculation assumes a stadion of {{convert|160|m|ft|1|abbr=off|sp=us}}.}}

|rowspan=2 colspan=2 align=center|+60%

|rowspan=2 align=center|+156%

|rowspan=2 align=center|+309%

scope=row|Aristotle

|align=center|~350 BCE

scope=row|Eratosthenes of Cyrene{{cite web|url=http://kiwihellenist.blogspot.com/2023/06/eratosthenes-2a.html|title=How Eratosthenes measured the earth. Part 2|first=Peter|last=Gainsford|publisher=blogspot.com|date=June 10, 2023|access-date=December 15, 2024}}

|align=center|~250 BCE

|colspan=2 align=center|252,000 stadia
~40,320 km{{efn|name=stadion}}

|colspan=2 align=center|+0.7%

|align=center|+1.5%

|align=center|+2.2%

scope=row|Archimedes of Syracuse{{cite web|url=https://archive.org/details/dli.pahar.3694/page/2/mode/2up|pp=7|title=Introduction to geodesy: the history and concepts of modern geodesy|first=James Raymond|last=Smith|publisher=Wiley|year=1997|access-date=December 15, 2024}}

|align=center|~237 BCE

|colspan=2 align=center|300,000 stadia
~54,000 km{{efn|name=stadion}}

|colspan=2 align=center|+35%

|align=center|+82%

|align=center|+145%

scope=row|Posidonius of Apameia{{cite web|url=https://archive.org/details/dli.pahar.3694/page/10/mode/2up|pp=10-11|title=Introduction to geodesy: the history and concepts of modern geodesy|first=James Raymond|last=Smith|publisher=Wiley|year=1997|access-date=December 15, 2024}}

|align=center|~85 BCE

|colspan=2 align=center|240,000 stadia
~38,400 km{{efn|name=stadion}}

|colspan=2 align=center

4%

|align=center

8%

|align=center

12%
scope=row|Marinus of Tyre

|align=center|~114

|rowspan=2 colspan=2 align=center|180,000 stadia
~28,800 km{{efn|name=stadion}}

|rowspan=2 colspan=2 align=center

28%

|rowspan=2 align=center

48%

|rowspan=2 align=center

63%
scope=row|Claudius Ptolemy

|align=center|~150

scope=row|Aryabhata

|align=center|~510

|colspan=2 align=center|3,299 yojana
~39,588 km{{efn|name=yojana|The yojana was a unit of length used in ancient India and Southeast Asia that could range from about {{convert|3500|to|15000|m|ft|0|abbr=off|sp=us}}. This calculation assumes a yojana of {{convert|12000|m|ft|0|abbr=off|sp=us}}.}}

|colspan=2 align=center

1.1%

|align=center

2.2%

|align=center

3.3%
scope=row|Varahamihira

|align=center|~555

|colspan=2 align=center|3,200 yojana
~38,400 km{{efn|name=yojana}}

|colspan=2 align=center

4%

|align=center

8%

|align=center

12%
scope=row|Brahmagupta

|align=center|628

|colspan=2 align=center|5,000 yojana
~60,000 km{{efn|name=yojana}}

|colspan=2 align=center|+50%

|align=center|+125%

|align=center|+237%

scope=row|Yi Xing{{cite web|url=https://archive.org/details/dli.pahar.3694/page/14/mode/2up|pp=14-15|title=Introduction to geodesy: the history and concepts of modern geodesy|first=James Raymond|last=Smith|publisher=Wiley|year=1997|access-date=December 15, 2024}}

|align=center|~726

|colspan=2 align=center|128,300 
~56,869 km{{efn|The is a Chinese unit of distance that varied from about {{convert|300|to|576|m|ft|0|abbr=off|sp=us}}. This calculation assumes a Tang dynasty distance of {{convert|443.25|m|ft|2|abbr=off|sp=us}}.}}

|colspan=2 align=center|+42%

|align=center|+102%

|align=center|+187%

scope=row|Caliph al-Ma'mun{{cite web|url=https://archive.org/details/dli.pahar.3694/page/12/mode/2up|pp=12-13|title=Introduction to geodesy: the history and concepts of modern geodesy|first=James Raymond|last=Smith|publisher=Wiley|year=1997|access-date=December 15, 2024}}

|align=center|~830

|colspan=2 align=center|20,400 Arabic miles
~39,270 km{{efn|name=Arabic mile|The Arabic mile was a historical Arabic unit of length that could range from about {{convert|1800|to|2000|m|ft|0|abbr=off|sp=us}}. This calculation assumes a Arabic mile of {{convert|1925|m|ft|0|abbr=off|sp=us}}.}}

|colspan=2 align=center

1.9%

|align=center

3.8%

|align=center

5.6%
scope=row|al-Biruni

|align=center|~1037

|colspan=2 align=center|80,445,739 cubits
~38,614 km{{efn|name=cubit|The cubit used by al-Biruni may have ranged from about {{convert|40|to|52|cm|in|1|abbr=off|sp=us}}. This calculation assumes a cubit of {{convert|48|cm|in|3|abbr=off|sp=us}}.}}

|colspan=2 align=center

4%

|align=center

7%

|align=center

10%
scope=row|Bhāskara II

|align=center|1150

|colspan=2 align=center|4,967 yojana
~59,604 km{{efn|name=yojana}}

|colspan=2 align=center|+49%

|align=center|+122%

|align=center|+230%

scope=row|Nilakantha Somayaji

|align=center|1501

|colspan=2 align=center|3,300 yojana
~39,600 km{{efn|name=yojana}}

|colspan=2 align=center

1.1%

|align=center

2.1%

|align=center

3.1%
scope=row|Jean Fernel{{cite web|url=https://archive.org/details/dli.pahar.3694/page/16/mode/2up|pp=17|title=Introduction to geodesy: the history and concepts of modern geodesy|first=James Raymond|last=Smith|publisher=Wiley|year=1997|access-date=December 15, 2024}}

|align=center|1525

|colspan=2 align=center|24,514.56 Italian miles
~39,812 km{{efn|name=Italian mile|The Italian mile is an old Italian unit of distance equal to about {{convert|1624|m|ft|0|abbr=off|sp=us}}.}}

|colspan=2 align=center

0.546%

|align=center

1.089%

|align=center

1.629%
scope=row|Jean Picard{{cite web|url=https://archive.org/details/dli.pahar.3694/page/16/mode/2up|pp=17|title=Introduction to geodesy: the history and concepts of modern geodesy|first=James Raymond|last=Smith|publisher=Wiley|year=1997|access-date=December 15, 2024}}

|align=center|1670

|colspan=2 align=center|20,541,600 toises
~40,036 km{{efn|name=toise|The toise is an old French unit of length equal to about {{convert|1.949|m|ft|3|abbr=off|sp=us}}.}}

|colspan=2 align=center|+0.013%

|align=center|+0.027%

|align=center|+0.040%

scope=col rowspan=3|Measurements of the Earth as an oblate spheroid

!scope=col rowspan=3|Year

!scope=col colspan=2|Measurement

!scope=col colspan=4|Deviation from WGS 84

scope=col colspan=2|Circumference

!scope=col colspan=2|Circumference

!scope=col rowspan=2|Surface area

!scope=col rowspan=2|Volume

scope=col|Equitorial

!scope=col|Meridional

!scope=col|Equitorial

!scope=col|Meridional

scope=row|Pierre Louis Maupertuis

|align=center|1738

|align=center|40,195 km
24,976 miles

|align=center|40,008 km
24,860 miles

|align=center|+0.300%

|align=center|+0.206%

|align=center|+0.475%

|align=center|+0.713%

scope=row|Plessis{{cite book|url=https://books.google.com/books?id=gQu6uMyYrB4C|title=The Measure of All Things: The Seven-year Odyssey and Hidden Error that Transformed the World|first=K|last=Alder.|publisher=Free Press|year=2002|isbn=978-0-7432-1675-3}}

|align=center|1817

|align=center|40,065 km
24,895 miles

|align=center|40,000 km
24,854 miles

|align=center

0.025%

|align=center

0.020%

|align=center

0.043%

|align=center

0.065%
scope=row|George Everest{{cite web|url=https://www.ngs.noaa.gov/PUBS_LIB/Geodesy4Layman/TR80003A.HTM|title=Geodesy for the Layman|publisher=Defense Mapping Agency|date=March 16, 1984|access-date=December 15, 2024}}

|align=center|1830

|align=center|40,070 km
24,898 miles

|align=center|40,003 km
24,857 miles

|align=center

0.013%

|align=center

0.012%

|align=center

0.024%

|align=center

0.027%
scope=row|George Biddell Airy

|align=center|1830

|align=center|40,071 km
24,899 miles

|align=center|40,004 km
24,858 miles

|align=center

0.009%

|align=center

0.008%

|align=center

0.017%

|align=center

0.026%
scope=row|Friedrich Wilhelm Bessel

|align=center|1841

|align=center|40,070 km
24,899 miles

|align=center|40,003 km
24,857 miles

|align=center

0.012%

|align=center

0.011%

|align=center

0.023%

|align=center

0.034%
scope=row|Alexander Ross Clarke

|align=center|1880

|align=center|40,075.721 km
24,901.899 miles

|align=center|40,007.470 km
24,859.489 miles

|align=center|+0.001 758%

|align=center

0.000 982%

|align=center

0.000 139%

|align=center

0.000 219%
scope=row|Friedrich Robert Helmert

|align=center|1906

|align=center|40,075.413 km
24,901.707 miles

|align=center|40,008.268 km
24,859.985 miles

|align=center|+0.000 988%

|align=center|+0.001 012%

|align=center|+0.002 008%

|align=center|+0.003 012%

scope=row|John Fillmore Hayford

|align=center|1910

|rowspan=2 align=center|40,076.594 km
24,902.441 miles

|rowspan=2 align=center|40,009.153 km
24,860.535 miles

|rowspan=2 align=center|+0.003 935%

|rowspan=2 align=center|+0.003 225%

|rowspan=2 align=center|+0.006 923%

|rowspan=2 align=center|+0.010 382%

scope=row|IUGG 24

|align=center|1924

scope=row|NAD 27

|align=center|1927

|align=center|40,075.453 km
24,901.732 miles

|align=center|40,007.552 km
24,859.540 miles

|align=center|+0.001 088%

|align=center

0.000 777%

|align=center

0.000 312%

|align=center

0.000 475%
scope=row|Feodosy Krasovsky

|align=center|1940

|align=center|40,076.695 km
24,901.883 miles

|align=center|40,008.550 km
24,860.160 miles

|align=center|+0.001 693%

|align=center|+0.001 717%

|align=center|+0.003 419%

|align=center|+0.005 128%

scope=row|Irene Fischer{{cite book|title=A continental datum for mapping and engineering in South America|first1=Irene Kaminka|last1=Fischer|date=September 1974|publisher=International Federation of Surveyors|location=Washington, DC}}

|align=center|1960

|align=center|40,075.130 km
24,901.531 miles

|align=center|40,007.985 km
24,859.810 miles

|align=center|+0.000 282%

|align=center|+0.000 306%

|align=center|+0.000 597%

|align=center|+0.000 895%

scope=row|WGS 66

|align=center|1966

|align=center|40,075.067 km
24,901.492 miles

|align=center|40,007.911 km
24,859.764 miles

|align=center|+0.000 125%

|align=center|+0.000 121%

|align=center|+0.000 245%

|align=center|+0.000 368%

scope=row|IUGG 67

|align=center|1967

|align=center|40,075.161 km
24,901.551 miles

|align=center|40,008.005 km
24,859.822 miles

|align=center|+0.000 361%

|align=center|+0.000 355%

|align=center|+0.000 714%

|align=center|+0.001 070%

scope=row|WGS 72

|align=center|1972

|align=center|40,075.004 km
24,901.453 miles

|align=center|40,007.851 km
24,859.726 miles

|align=center|+0.000 031%

|align=center|+0.000 030%

|align=center|+0.000 061%

|align=center|+0.000 091%

scope=row|GRS 80

|align=center|1980

|align=center|40,075.016.69 m
131,479,713.5 feet

|align=center|40,007.862.87 m
131,259,392.6 feet

|align=center|0.000 000%

|align=center

0.000 000 126%

|align=center

0.000 000 168%

|align=center

0.000 000 252%
scope=row|NAD 83

|align=center|1983

|align=center|40,075.016.69 m
131,479,713.5 feet

|align=center|40,007.862.92 m
131,259,392.8 feet

|align=center|0.000 000%

|align=center

0.000 000 001%

|align=center

0.000 000 001%

|align=center

0.000 000 002%
scope=row|WGS 84{{cite web|url=https://epsg.io/4326https://epsg.io/4326|title=World Geodetic System 1984|website=EPSG.io|year=1984|access-date=December 15, 2024}}

|align=center|1984

|align=center|40,075.016.69 m
131,479,713.5 feet

|align=center|40,007.862.92 m
131,259,392.8 feet

|align=center colspan=4|WGS 84 reference

scope=row|ETRS 89

|align=center|1989

|align=center|40,075.016.69 m
131,479,713.5 feet

|align=center|40,007.862.92 m
131,259,392.8 feet

|align=center|0.000 000%

|align=center

0.000 000 001%

|align=center

0.000 000 001%

|align=center

0.000 000 002%

Earth ellipsoid

[https://www.aps.org/apsnews/2022/10/newton-earth-shape Newton]

Notes

{{notelist}}

References

{{reflist}}