User:DanielCarrera
I am an astronomer. I am a postdoc at Iowa State University. I use computer simulations to test models of planet formation.
\begin{bmatrix}
2 & & & & & & \\
1 & 4 & 1 & & & & \\
& 1 & 4 & 1 & & & \\
& & 1 & 4 & 1 & & \\
& & & 1 & 4 & 1 & \\
& & & & 1 & 4 & 1 \\
& & & & & & 2 \\
\end{bmatrix}
\begin{bmatrix}
f_1' \\
f_2' \\
f_3' \\
f_4' \\
f_5' \\
f_6' \\
f_7' \\
\end{bmatrix}
= \frac{1}{h}
\begin{bmatrix}
-3& 4 &-1 & & & & \\
-3& & 3 & & & & \\
&-3 & & 3 & & & \\
& &-3 & & 3 & & \\
& & &-3 & & 3 & \\
& & & &-3 & & 3 \\
& & & & 1 &-4 & 3 \\
\end{bmatrix}
\begin{bmatrix}
f_1 \\
f_2 \\
f_3 \\
f_4 \\
f_5 \\
f_6 \\
f_7 \\
\end{bmatrix}
f_{i+1} = f_i + f'_i h
{\color{red} + \frac{f''_i}{2!}h^2}
{\color{blue}
+ \frac{f^{(3)}_i}{3!}h^3
+ \frac{f^{(4)}_i}{4!}h^4
+ \frac{f^{(5)}_i}{5!}h^5
+ \frac{f^{(6)}_i}{6!}h^6
+ \cdots}
f_{i+1}' = f'_i
{\color{red} + f''_i h}
{\color{blue}
+ \frac{f^{(3)}_i}{2!}h^2
+ \frac{f^{(4)}_i}{3!}h^3
+ \frac{f^{(5)}_i}{4!}h^4
+ \frac{f^{(6)}_i}{5!}h^5
+ \cdots}
f_1' + 3 f_2' = \frac{- 17f_1 + 9f_2 + 9f_3 - f_4}{6h}
+ {\color{blue}\mathcal{O}( h^4 )}
f_N' + 3 f_{N-1}' = \frac{17f_N - 9f_{N-1} - 9f_{N-2} + f_{N-3}}{6h}
+ {\color{blue}\mathcal{O}( h^4 )}
\frac{1}{3}f'_{i-1}
+ f'_{i} + \frac{1}{3}f'_{i+1}
= \frac{14}{9} \frac{f_{i+1}-f_{i-1}}{2h}
+ \frac{1}{9} \frac{f_{i+2}-f_{i-2}}{4h}
+ {\color{blue}\mathcal{O}( h^6 )}
f'_{i} =
- \frac{49f_i}{20h}
+ \frac{ 6f_{i+1}}{h}
- \frac{15f_{i+2}}{2h}
+ \frac{20f_{i+3}}{3h}
- \frac{15f_{i+4}}{4h}
+ \frac{ 6f_{i+5}}{5h}
- \frac{ f_{i+6}}{6h}
+ {\color{blue}\mathcal{O}( h^6 )}
f'_{i} =
+ \frac{49f_i}{20h}
- \frac{ 6f_{i-1}}{h}
+ \frac{15f_{i-2}}{2h}
- \frac{20f_{i-3}}{3h}
+ \frac{15f_{i-4}}{4h}
- \frac{ 6f_{i-5}}{5h}
+ \frac{ f_{i-6}}{6h}
+ {\color{blue}\mathcal{O}( h^6 )}