User:EditingPencil/sandbox/action

Let C= \{ q(t)\,|\,t_1\leq t \leq t_2 \} be a trajectory for a particle. Then, the action is given by:

\Phi [C] = \text{Action of trajectory C} = \int_{t_1}^{t_2} L(q(t),\dot q(t),t)\, dt

Let a variation of the trajectory be given as: C' = \{ q'(t)=q(t)+\delta q(t)\, |\,t_1+\delta t_1\leq t \leq t_2 +\delta t_2\} , then the change in action is given by:

\begin{align}

\delta\Phi[C]&=\Phi[C^{\prime}]-\Phi[C]\\

&=\int_{t_{1}+\delta t_1}^{t_{2}+\delta t_2}d t L(q(t)+\delta q(t),\dot{q}(t)+\delta\dot{q}(t))-\int_{t_{1}}^{t_{2}}d t L(q(t),\dot{q}(t),t)\\

&= \int_{t_{1}}^{t_{2}} [ L(q(t)+\delta q(t),\dot{q}(t)+\delta \dot q(t),t)- L(q(t),\dot{q}(t),t) ] \, dt +\,\int_{t_{2}}^{t_{2}}L(q_{s}^{\prime}\,\dot{q}_{s}^{\prime}\,t)\,d t\,-\,\int_{t_{1}}^{t_{1}}L(q_{s}^{\prime}\,\dot{q}_{s}^{\prime},t)\,d t\\

&=\int_{t_{1}}^{t_{2}} \left(\frac{\partial L}{\partial q} \delta q + \frac{\partial L}{\partial \dot q} \delta \dot q\right) \, dt +\,\int_{t_{2}}^{t_{2}+\delta t_2}L(q^{\prime},\dot{q}^{\prime},t)\,d t\,-\,\int_{t_{1}}^{t_{1}+\delta t_1}L(q^{\prime},\dot{q}^{\prime},t) \,d t\\

&=\int_{t_{1}}^{t_{2}}d t\left[\frac{\partial L}{\partial q}\,\delta q(t)+\frac{\partial L}{\partial\dot{q}}\ \frac{d}{d t}\,\delta q(t)\right]+\bigg[L\Delta t\bigg]_{t_{1}}^{t_{2}}\\

&=\int_{t_{1}}^{t_{2}}d t\left[\frac{\partial L}{\partial q}-\frac{d}{d t}\left(\frac{\partial L}{\partial\dot{q}}\right)\right]\delta q(t)+\frac{\partial L}{\partial\dot{q}}\delta q(t)\biggr|_{t_{1}}^{t_{2}}+L\Delta t\biggr|_{t_{1}}^{t_{2}}

\end{align}

Defining the total variation of path as \Delta q = q'(t')-q(t)= \delta q(t) + \dot q (t) \delta t and momentum as \frac{\partial L}{\partial \dot q}=p , we get:

\begin{align}

\Delta\Phi&=\int_{t_{1}}^{t_{2}} d t \left[\frac{\partial L}{\partial q}-\frac{d}{d t}\,\frac{\partial L}{\partial\dot{q}}\right]\delta q(t)+\bigg[p\Delta q-(p\dot q - L)\Delta t\bigg]_{t_{1}}^{t_{2}}\\

&=\int_{t_{1}}^{t_{2}} d t \left[\frac{\partial L}{\partial q}-\frac{d}{d t}\,\frac{\partial L}{\partial\dot{q}}\right]\delta q(t)+\bigg[p\Delta q-H \Delta t\bigg]_{t_{1}}^{t_{2}}\\

\end{align}

Hamilton's action principle

Considering a special class of variation of path that leaves the end-points and terminal times unchanged, ie. \Delta t_i=\Delta q(t_i)=0. For such actions, the change in action functional is given by:

\begin{align}

\Delta_\sigma\Phi&=\int_{t_{1}}^{t_{2}} d t \left[\frac{\partial L}{\partial q}-\frac{d}{d t}\,\frac{\partial L}{\partial\dot{q}}\right]\delta q(t)

\end{align}

From Lagrange's equation of motion, it follows that the infinitesimal change in action functional vanishes if the given trajectory is a solution for trajectory of the particle.

Weiss action principle

Using Lagrange's equations of motion, we have the following value for the change in action functional:

\begin{align}

\Delta\Phi&=\int_{t_{1}}^{t_{2}} d t \left[\frac{\partial L}{\partial q}-\frac{d}{d t}\,\frac{\partial L}{\partial\dot{q}}\right]\delta q(t)+\bigg[p\Delta q-H\Delta t\bigg]_{t_{1}}^{t_{2}}\\

&=\bigg[p\Delta q-H \Delta t\bigg]_{t_{1}}^{t_{2}}\\

\end{align}

Hence, Hamilton's action principle can be extended to Weiss action principle as the dynamical trajectory in configuration space is that which only provides end-point contributions to \Delta \Phi .{{Harvnb|Sudarshan|Mukunda|2010|pages=12-20}}

References

{{Cite book |last1=Sudarshan |first1=E C George |url=https://books.google.com/books?id=fqaiMJMGYlsC |title=Classical Dynamics: A Modern Perspective |last2=Mukunda |first2=N |publisher=Wiley |year=2010 |isbn=9780471835400}}