User:EditingPencil/sandbox/ensembles

History

In the begening of the 20th century, four statistical ensembles were identified, namely, first adiabatic ensemble ie. microcanonical ensemble, and three isothermal ensembles which are canonical ensemble, grand canonical ensemble and Gibbs canonical ensemble.

Generalized ensemble theory

class="wikitable"

|+

!

!Microcanonical

!Canonical

!Gibbs Canonical

!Grand Canonical

!Isoenthalpic–isobaric ensemble{{Cite journal |last=Haile |first=J.M. |last2=Graben |first2=H.W. |date=1980-08-20 |title=On the isoenthalpic-isobaric ensemble in classical statistical mechanics |url=http://www.tandfonline.com/doi/abs/10.1080/00268978000102391 |journal=Molecular Physics |language=en |volume=40 |issue=6 |pages=1433–1439 |doi=10.1080/00268978000102391 |issn=0026-8976}}

Macrostate

!N,V,E

!N,V,T

!N,P,T

!mu,V,T

!N,P,H

Probability of each microstate

|P(\mu_i)=e^{-ST\beta}=\frac 1 \Omega

|P(\mu_i)=e^{-ST\beta}=\frac{e^{-E\beta}} Z

|P(\mu_i)=e^{-ST\beta}=\frac{e^{-H\beta}} Z

|P(\mu_i)=e^{-ST\beta}=\frac{e^{-(E-\mu N)\beta}} Z

|

Normalization of probabilities

|\Omega =\sum_i 1

|Z=\sum_i e^{-\frac{E(\mu_i)}{K_BT}}

|Z=\sum_i e^{-\frac{H(\mu_i)}{K_BT}}

|Z=\sum_i e^{-\frac{E(\mu_i)-\mu N(\mu_i)}{K_BT}}=\sum_i e^{-\frac {L(\mu_i)} {K_BT}}

|

Entropy relation

|S = K_B \log(\Omega)

|S = K_B \log(\mathcal Z) + K_B \beta E

|S = K_B \log(\mathcal Z) + K_B \beta H

|S = K_B \log(\mathcal Z) + K_B \beta (E - \mu N)

|

Variable

|\Omega(N, V , E ) = e^{\frac S { K_B}}

|\mathcal Z(N,V,T)=e^{-\frac F {K_B T}}

|\mathcal Z(N,P,T )=e^{-\frac G{K_BT}}

|\mathcal Z(\mu,V,T)=e^{-\frac \Phi {K_BT}}

|\mathcal Z(N,P,H)

Average relations

|

|-\frac{\partial}{\partial \beta}(\log \mathcal Z) = \langle E \rangle

|-\frac{\partial}{\partial \beta}(\log \mathcal Z) = \langle H \rangle

|-\frac{\partial}{\partial \beta}(\log \mathcal Z) = \langle E \rangle - \mu \langle N \rangle

|

rowspan="3" |Other relations

| P =\frac 1 \beta \frac{\partial\log(\Omega)}{\partial V}

| P =\frac 1 \beta \frac{\partial\log(\mathcal Z)}{\partial V}

| V =- \frac 1 \beta \frac{\partial\log(\mathcal Z)}{\partial P}

| N = \frac 1 \beta \frac{\partial\log(\mathcal Z)}{\partial \mu}

| V =- \frac 1 \beta \frac{\partial\log(\mathcal Z)}{\partial P}

\mu =-\frac 1 \beta \frac{\partial\log(\Omega)}{\partial N}

| \mu =-\frac 1 \beta \frac{\partial\log(\mathcal Z)}{\partial N}

| \mu =-\frac 1 \beta \frac{\partial\log(\mathcal Z)}{\partial N}

| P = -\frac 1 \beta \frac{\partial\log(\mathcal Z)}{\partial V}

| \mu =-\frac 1 \beta \frac{\partial\log(\mathcal Z)}{\partial N}

\beta = \frac{\partial\log(\Omega)}{\partial E}

|S = - \frac{\partial F}{\partial T}

|S = - \frac{\partial G}{\partial T}

|S = - \frac{\partial \Phi }{\partial T}

| \beta = \frac{\partial\log(\mathcal Z)}{\partial H}

about pseudo-ensembles

class="wikitable"

|+

!

!Grand isobaric adiabatic ensemble

!Grand isochoric adiabatic ensemble

!Guggenheim ensemble

Macrostate

!mu, P, R

!mu, V, L

!mu, P, T

Probability of each microstate

|

|

|P(\mu_i)=e^{-ST\beta}=\frac{e^{-(E+PV-\mu N)\beta}} Z

Normalization of probabilities

|

|

|Z=\sum_i e^{-\frac{E(\mu_i)+PV(\mu_i)-\mu N(\mu_i)}{K_BT}}=\sum_i e^{-\frac {R(\mu_i)} {K_BT}}

Entropy relation

|

|

|

Variable

|

|

|

Average relations

|

|

|

rowspan="3" |Other relations

|

|

|

|

|

|

|

https://www.google.co.in/books/edition/Molecular_Networking/ViDpEAAAQBAJ?hl=en&gbpv=1&pg=PT130&printsec=frontcover