User:Encyclops/Testpage

Suppose two systems are connected as follows:

:\|H_1\|_\infty \|H_2\|_\infty \le 1

Lauricella equation of elasticity

g_j(t) +\frac{1}{2 \pi i} \int_s g_j(\zeta)\frac{\partial}{\partial s}ln(\frac{t-\zeta}{\bar{t}-\bar{\zeta}})ds

+\frac{k_j}{2 \pi i} \int_s \bar{g_j}(\zeta)\frac{\partial}{\partial s}\frac{t-\zeta}{\bar{t}-\bar{\zeta}}ds = F_j(t)

see also

S. G. Mikhlin (1957), Integral Equations, Pergamon Press, London.

Chinese tests

{{lang|zh|李雨}}

Lee Teng-hui ({{zh|t=李登輝|s=李登辉|p=Lǐ Dēnghuī|poj=Lí Teng-hui|first=t}}; born 15 January 1923) is a politician of the Republic of China (commonly known as Taiwan).

Kucera bio

http://arri.uta.edu/acs/VisitingLectures/Kucera05.doc

References

  • D. C. Youla, H. A. Jabri, J. J. Bongiorno: Modern Wiener-Hopf design of optimal controllers: part II, IEEE Trans. Automat. Contr., AC-21 (1976) pp319-338
  • V. Kucera: Stability of discrete linear feedback systems. In: Proceedings of the 6th IFAC. World Congress, Boston, MA, USA, (1975).
  • C. A. Desoer, R.-W. Liu, J. Murray, R. Saeks. Feedback system design: the fractional representation approach to analysis and synthesis. IEEE Trans. Automat. Contr., AC-25 (3), (1980) pp399-412

{{reflist}}