User:FuzzyMagma/Cold dwell fatigue
{{Cite journal |last1=Xu |first1=Yilun |last2=Joseph |first2=Sudha |last3=Karamched |first3=Phani |last4=Fox |first4=Kate |last5=Rugg |first5=David |last6=Dunne |first6=Fionn P. E. |last7=Dye |first7=David |date=2020-11-17 |title=Predicting dwell fatigue life in titanium alloys using modelling and experiment |journal=Nature Communications |language=en |volume=11 |issue=1 |pages=5868 |doi=10.1038/s41467-020-19470-w |pmid=33203830 |pmc=7672227 |bibcode=2020NatCo..11.5868X |issn=2041-1723}}{{Cite journal |last1=Dunne |first1=F. P. E. |last2=Rugg |first2=D. |last3=Walker |first3=A. |date=2007-06-01 |title=Lengthscale-dependent, elastically anisotropic, physically-based hcp crystal plasticity: Application to cold-dwell fatigue in Ti alloys |url=https://www.sciencedirect.com/science/article/pii/S0749641906001641 |journal=International Journal of Plasticity |language=en |volume=23 |issue=6 |pages=1061–1083 |doi=10.1016/j.ijplas.2006.10.013 |issn=0749-6419}}{{Cite journal |last1=Zheng |first1=Zebang |last2=Stapleton |first2=Adam |last3=Fox |first3=Kate |last4=Dunne |first4=Fionn P. E. |date=2018-12-01 |title=Understanding thermal alleviation in cold dwell fatigue in titanium alloys |url=https://www.sciencedirect.com/science/article/pii/S0749641918302195 |journal=International Journal of Plasticity |language=en |volume=111 |pages=234–252 |doi=10.1016/j.ijplas.2018.07.018 |s2cid=139684077 |issn=0749-6419}}{{Cite journal |last1=Wu |first1=Zhihong |last2=Kou |first2=Hongchao |last3=Chen |first3=Nana |last4=Xi |first4=Zhicheng |last5=Fan |first5=Jiangkun |last6=Tang |first6=Bin |last7=Li |first7=Jinshan |date=2022-09-01 |title=Recent developments in cold dwell fatigue of titanium alloys for aero-engine applications: a review |url=https://www.sciencedirect.com/science/article/pii/S2238785422011334 |journal=Journal of Materials Research and Technology |language=en |volume=20 |pages=469–484 |doi=10.1016/j.jmrt.2022.07.094 |s2cid=250709633 |issn=2238-7854}}{{Cite journal |last1=Zhang |first1=Zhen |last2=Cuddihy |first2=M. A. |last3=Dunne |first3=F. P. E. |date=September 2015 |title=On rate-dependent polycrystal deformation: the temperature sensitivity of cold dwell fatigue |journal=Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences |language=en |volume=471 |issue=2181 |pages=20150214 |doi=10.1098/rspa.2015.0214 |issn=1364-5021 |pmc=4614441 |pmid=26528078|bibcode=2015RSPSA.47150214Z }}{{Cite journal |last1=Kirane |first1=Kedar |last2=Ghosh |first2=Somnath |date=2008-12-01 |title=A cold dwell fatigue crack nucleation criterion for polycrystalline Ti-6242 using grain-level crystal plasticity FE Model |url=https://www.sciencedirect.com/science/article/pii/S0142112308001667 |journal=International Journal of Fatigue |language=en |volume=30 |issue=12 |pages=2127–2139 |doi=10.1016/j.ijfatigue.2008.05.026 |issn=0142-1123}}{{Cite journal |last1=Zhang |first1=Zhen |last2=Dunne |first2=Fionn P. E. |date=2018-08-01 |title=Phase morphology, variants and crystallography of alloy microstructures in cold dwell fatigue |url=https://www.sciencedirect.com/science/article/pii/S0142112318301221 |journal=International Journal of Fatigue |language=en |volume=113 |pages=324–334 |doi=10.1016/j.ijfatigue.2018.03.030 |issn=0142-1123}}{{Cite journal |last1=Liu |first1=Yang |last2=Adande |first2=Suki |last3=Britton |first3=Thomas Benjamin |last4=Dunne |first4=Fionn P. E. |date=2021-10-01 |title=Cold dwell fatigue analyses integrating crystal-level strain rate sensitivity and microstructural heterogeneity |url=https://www.sciencedirect.com/science/article/pii/S0142112321002589 |journal=International Journal of Fatigue |language=en |volume=151 |pages=106398 |doi=10.1016/j.ijfatigue.2021.106398 |hdl=10044/1/90819 |issn=0142-1123}}{{Cite journal |last1=Xu |first1=Yilun |last2=Joseph |first2=Sudha |last3=Karamched |first3=Phani |last4=Fox |first4=Kate |last5=Rugg |first5=David |last6=Dunne |first6=Fionn P. E. |last7=Dye |first7=David |date=2020-11-17 |title=Predicting dwell fatigue life in titanium alloys using modelling and experiment |journal=Nature Communications |language=en |volume=11 |issue=1 |pages=5868 |doi=10.1038/s41467-020-19470-w |pmid=33203830 |pmc=7672227 |bibcode=2020NatCo..11.5868X |issn=2041-1723}}{{Cite journal |last1=Lavogiez |first1=C. |last2=Dureau |first2=C. |last3=Nadot |first3=Y. |last4=Villechaise |first4=P. |last5=Hémery |first5=S. |date=2023-01-01 |title=Crack initiation mechanisms in Ti-6Al-4V subjected to cold dwell-fatigue, low-cycle fatigue and high-cycle fatigue loadings |url=https://ui.adsabs.harvard.edu/abs/2023AcMat.24418560L |journal=Acta Materialia |volume=244 |pages=118560 |doi=10.1016/j.actamat.2022.118560 |bibcode=2023AcMat.24418560L |s2cid=256802238 |issn=1359-6454}}{{Cite journal |last1=Xu |first1=Yilun |last2=Joseph |first2=Sudha |last3=Karamched |first3=Phani |last4=Fox |first4=Kate |last5=Rugg |first5=David |last6=Dunne |first6=Fionn P. E. |last7=Dye |first7=David |date=2020-11-17 |title=Predicting dwell fatigue life in titanium alloys using modelling and experiment |journal=Nature Communications |language=en |volume=11 |issue=1 |pages=5868 |doi=10.1038/s41467-020-19470-w |pmid=33203830 |pmc=7672227 |bibcode=2020NatCo..11.5868X |issn=2041-1723}}{{Cite journal |last1=Ready |first1=Adam J. |last2=Haynes |first2=Peter D. |last3=Grabowski |first3=Blazej |last4=Rugg |first4=David |last5=Sutton |first5=Adrian P. |date=July 2017 |title=The role of molybdenum in suppressing cold dwell fatigue in titanium alloys |journal=Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences |language=en |volume=473 |issue=2203 |pages=20170189 |doi=10.1098/rspa.2017.0189 |issn=1364-5021 |pmc=5549569 |pmid=28804261|bibcode=2017RSPSA.47370189R }}{{Cite journal |last1=Xu |first1=Yilun |last2=Joseph |first2=Sudha |last3=Karamched |first3=Phani |last4=Fox |first4=Kate |last5=Rugg |first5=David |last6=Dunne |first6=Fionn P. E. |last7=Dye |first7=David |date=2020-11-17 |title=Predicting dwell fatigue life in titanium alloys using modelling and experiment |journal=Nature Communications |language=en |volume=11 |issue=1 |pages=5868 |doi=10.1038/s41467-020-19470-w |pmid=33203830 |pmc=7672227 |bibcode=2020NatCo..11.5868X |issn=2041-1723}}{{Cite journal |last1=Sackett |first1=Elizabeth E. |last2=Bache |first2=Martin R. |date=September 2021 |title=Novel Experimentation for the Validation of Mechanistic Models to Describe Cold Dwell Sensitivity in Titanium Alloys |journal=Metals |language=en |volume=11 |issue=9 |pages=1456 |doi=10.3390/met11091456 |issn=2075-4701 |doi-access=free }}
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.847256
{{Cite web |last=Kaminski-Morrow2020-09-25T11:13:00+01:00 |first=David |title=A380 fan-hub disintegration traced to misunderstood 'cold dwell' fatigue |url=https://www.flightglobal.com/safety/a380-fan-hub-disintegration-traced-to-misunderstood-cold-dwell-fatigue/140320.article |access-date=2023-04-22 |website=Flight Global |language=en}}{{Cite web |title=LLNL physicist probes causes of life-shortening 'dwell fatigue' in titanium {{!}} Lawrence Livermore National Laboratory |url=https://www.llnl.gov/news/llnl-physicist-probes-causes-life-shortening-dwell-fatigue-titanium |access-date=2023-04-22 |website=www.llnl.gov |language=en}}{{Cite web |title=New research contributes to aero-engine safety {{!}} Imperial News {{!}} Imperial College London |url=https://www.imperial.ac.uk/news/213893/new-research-contributes-aero-engine-safety/amp/ |access-date=2023-04-22 |website=www.imperial.ac.uk}}{{Cite journal |last1=Kotha |first1=Shravan |last2=Ozturk |first2=Deniz |last3=Ghosh |first3=Somnath |date=2020-08-05 |title=Uncertainty-quantified parametrically homogenized constitutive models (UQ-PHCMs) for dual-phase α/β titanium alloys |url=https://www.nature.com/articles/s41524-020-00379-3 |journal=npj Computational Materials |language=en |volume=6 |issue=1 |page=117 |doi=10.1038/s41524-020-00379-3 |bibcode=2020npjCM...6..117K |s2cid=220975585 |issn=2057-3960}}{{Cite web |title=Accident: France A388 over Greenland on Sep 30th 2017, uncontained engine failure, fan and engine inlet separated |url=http://avherald.com/h?article=4af15205/0008 |access-date=2023-04-22 |website=avherald.com}}{{Cite web |title=How investigators found a jet engine under Greenland's ice sheet |url=https://www.cnn.com/2020/10/14/tech/airbus-jet-engine-greenland-ice-sheet/index.html |access-date=2023-04-22 |website=CNN |date=14 October 2020 |language=en}}{{Cite web |title=Five Materials Scientists awarded prestigious IOM3 prizes {{!}} Imperial News {{!}} Imperial College London |url=https://www.imperial.ac.uk/news/222893/five-materials-scientists-awarded-prestigious-iom3/amp/ |access-date=2023-04-22 |website=www.imperial.ac.uk}}
Cold dwell fatigue is a phenomenon that occurs in certain materials, particularly titanium-based alloys, under cyclic loading where the maximum tensile load is maintained for a given duration, resulting in a reduction in fatigue life by a decade or more compared to conventional fatigue without the hold period. This reduction in fatigue life is referred to as the "dwell debit".{{Cite journal |last1=Liu |first1=Yang |last2=Adande |first2=Suki |last3=Britton |first3=Thomas Benjamin |last4=Dunne |first4=Fionn P. E. |date=2021-10-01 |title=Cold dwell fatigue analyses integrating crystal-level strain rate sensitivity and microstructural heterogeneity |url=https://www.sciencedirect.com/science/article/pii/S0142112321002589 |journal=International Journal of Fatigue |language=en |volume=151 |pages=106398 |doi=10.1016/j.ijfatigue.2021.106398 |hdl=10044/1/90819 |issn=0142-1123}} The formation of facets, which are always associated with the failure initiation site, is considered fundamental to cold dwell fatigue. A commonly utilized model for facet nucleation is an adaptation of the classical Stroh model for crack initiation due to dislocation pile-up.{{Cite journal |last1=Cuddihy |first1=M. A. |last2=Stapleton |first2=A. |last3=Williams |first3=S. |last4=Dunne |first4=F. P. E. |date=2017-04-01 |title=On cold dwell facet fatigue in titanium alloy aero-engine components |url=https://www.sciencedirect.com/science/article/pii/S0142112316304054 |journal=International Journal of Fatigue |language=en |volume=97 |pages=177–189 |doi=10.1016/j.ijfatigue.2016.11.034 |issn=0142-1123}}
French investigators traced the serious engine failure involving an Air France Airbus A380 over Greenland to a phenomenon known as "cold dwell" fatigue. The failure was caused by a fan hub disintegration, which had resulted from cold dwell fatigue. The stress holds at moderate temperatures led to substantial reductions in cyclic life and were implicated in the service failures.{{Cite web |last=Kaminski-Morrow2020-09-25T11:13:00+01:00 |first=David |title=A380 fan-hub disintegration traced to misunderstood 'cold dwell' fatigue |url=https://www.flightglobal.com/safety/a380-fan-hub-disintegration-traced-to-misunderstood-cold-dwell-fatigue/140320.article |access-date=2023-04-22 |website=Flight Global |language=en}}{{Cite web |last=Singh |first=Sumit |date=2020-09-25 |title=What Caused Air France's Uncontained A380 Engine Failure? |url=https://simpleflying.com/air-france-66-engine-failure-report/ |access-date=2023-04-22 |website=Simple Flying |language=en}}
It has been about 50 years since the discovery that titanium alloys were susceptible to cold dwell fatigue, following two in-service failures of the Rolls Royce RB211 engine. Since then, a plethora of academic, industrial, and government research has been performed to understand the major factors influencing cold dwell fatigue.{{Cite journal |last1=Pilchak |first1=Adam |last2=Gram |first2=Michael |date=2022-10-01 |title=Cold Dwell Fatigue of Titanium Alloys |url=https://doi.org/10.1007/s11837-022-05463-1 |journal=JOM |language=en |volume=74 |issue=10 |pages=3691–3692 |doi=10.1007/s11837-022-05463-1 |bibcode=2022JOM....74.3691P |s2cid=252148181 |issn=1543-1851}}
Facets formation is considered fundamental to cold dwell fatigue, and it is always associated with the failure initiation site. The commonly utilized model for facet nucleation is an adaptation of the classical Stroh model for crack initiation due to dislocation pile-up introduced by Evans and Bache.{{Cite journal |last1=Cuddihy |first1=M. A. |last2=Stapleton |first2=A. |last3=Williams |first3=S. |last4=Dunne |first4=F. P. E. |date=2017-04-01 |title=On cold dwell facet fatigue in titanium alloy aero-engine components |url=https://www.sciencedirect.com/science/article/pii/S0142112316304054 |journal=International Journal of Fatigue |language=en |volume=97 |pages=177–189 |doi=10.1016/j.ijfatigue.2016.11.034 |issn=0142-1123}}
In the linear cumulative damage rule, when D C was calculated using the time exhaustion rule, the creep-fatigue damage was organized by the inequality D Total = (D F , D C) ≤ (0.1, 10 −6).{{Cite journal |last1=Ota |first1=Yutaro |last2=Kubushiro |first2=Keiji |last3=Yamazaki |first3=Yasuhiro |date=January 2022 |title=The life evaluation by linear cumulative damage rule for cold dwell fatigue of Ti‐6Al‐4V alloy |url=https://onlinelibrary.wiley.com/doi/10.1111/ffe.13597 |journal=Fatigue & Fracture of Engineering Materials & Structures |language=en |volume=45 |issue=1 |pages=259–269 |doi=10.1111/ffe.13597 |s2cid=240173526 |issn=8756-758X}} The phenomenon of cold dwell fatigue can occur under cyclic loading at room temperature and remains pronounced at 120°C but fades out above 200°C.
In summary, cold dwell fatigue is a phenomenon that occurs in certain materials, particularly titanium-based alloys, under cyclic loading, resulting in a reduction in fatigue life by a decade or more compared to conventional fatigue without the hold period. The phenomenon was implicated in the service failures of the Rolls Royce RB211 engine and the Air France Airbus A380 over Greenland. Research has been conducted to understand the major factors influencing cold dwell fatigue. The commonly utilized model for facet nucleation is an adaptation of the classical Stroh model for crack initiation due to dislocation pile-up. The stress sensitivity of the cold dwell fatigue test was higher than that of the low cycle fatigue test. The phenomenon is called "cold" dwell fatigue as it is prevalent at room temperature and remains pronounced at 120°C but fades out above 200°C.