User:Jacobolus/HalfTan
{{use dmy dates|cs1-dates=sy}}
:: This article is a draft, not yet ready for inclusion into the Wikipedia main namespace
File:Sine, cosine, tangent, half-tangent.png
In mathematics, the half-tangent is a parameter used for representing rotations, angles, or points on a circle. (It is also called various other names; see {{slink|#Terminology}}.) The half-tangent is the tangent of half the angle measure and it is the stereographic projection of a unit-magnitude complex number onto the imaginary -axis,
:
h = \tan\tfrac12\theta = -i \frac{z - 1}{z + 1} = \frac{\sin\theta}{1 + \cos\theta}.
In the inverse direction, angle measures, unit complex numbers, and unit vectors can be written in terms of the half-tangent,
:
\theta &= 2\arctan h = -i\log z, \\[5mu]
z &= \frac{1 + hi}{1 - hi} = \exp \theta i, \\[8mu]
\left( \cos\theta,\, \sin\theta \right) &= \left( \frac{1-h^2}{1 + h^2},\, \frac{2h}{1 + h^2} \right).
\end{align}
The half-tangent is a convenient representation for explicit computation because the transcendental circular functions (sine, cosine, &c.) of the angle measure become rational functions of requiring only elementary arithmetic to compute. The half-tangent is a single real number, unlike the unit complex number which is comprised of two real coordinates.
File:Sinh, cosh, tanh, half-tanh.png
The hyperbolic half-tangent is the analogous parameter used for representing hyperbolic angles, rotations (Lorentz boosts), points on a hyperbola, or multiplicative scalars. The hyperbolic half-tangent is the hyperbolic tangent of half the hyperbolic angle measure and it is the stereographic projection of a unit-magnitude hyperbolic number (where {{nobr|)}} onto the imaginary -axis, and also a Cayley transform of a real scalar
:
h = \tanh\tfrac12\psi = j \frac{\zeta - 1}{\zeta + 1} = \frac{\sinh\psi}{1 + \cosh\psi} = \frac{w - 1}{w + 1}.
In the inverse direction, hyperbolic angle measures, unit hyperbolic numbers, and hyperbolic unit vectors can be written in terms of the half-tangent,
:
\psi &= 2\operatorname{artanh} h = \log w = j\log \zeta, \\[5mu]
\zeta &= \frac{1 + hj}{1 - hj} = \exp \psi j, \qquad w = \frac{1 + h}{1 - h} = \exp \psi, \\[8mu]
\left( \cosh\psi,\, \sinh\psi \right) &= \left( \frac{1+h^2}{1-h^2},\, \frac{2h}{1 - h^2} \right).
\end{align}
== Terminology ==
The half-tangent is used widely in mathematics, science, and engineering, but does not have a universally established name. In the 16th–19th century in Neo-Latin it typically appeared in descriptive phrases such as tangens dimidiae ("tangent of half") or tangens semi-summae ("tangent of the semi-sum").One notable exception is semi-tangens, translated back from English:{{pb}}{{cite book |last=Wilson |first=John |year=1718 |title=Principia trigonometriæ, Succinctè demonstrata |publisher=Pieter van der Aa |url=https://books.google.com/books?id=RnFbAAAAQAAJ&pg=PA49 |page=49}} This was often translated into similar phrases in other languages but also sometimes given the dedicated name halbe tangente in German;Examples:{{pb}}{{cite book |last=Geissler |first=Johann Gottlieb |year=1800 |title=Instrumente und Kunstwerke für Liebhaber und Künstler |volume=11 |language=de |trans-title=Instruments and artworks for enthusiasts and artists |publisher=Johann David Schöps |page=161 |url=https://archive.org/details/b28773305_0004/page/n316/ }}{{pb}}
{{cite book |last1=Van Swinden |first1=Jean Henri |author1-link= Jean Henri van Swinden |last2=Jacobi |first2=Carl Gustav Jacob |author2-link=Carl Gustav Jacob Jacobi |year=1834 |title=J.H. van Swinden's Elemente der Geometrie |language=de |trans-title=J.H. van Swinden's Elements of Geometry |publisher=Friedrich Frommann |url=https://gdz.sub.uni-goettingen.de/id/PPN576734179?tify=%7B%22pages%22%3A%5B309%5D%7D |at=p. 277, with [https://gdz.sub.uni-goettingen.de/id/PPN576734179?tify=%7B%22pages%22%3A%5B585%5D%7D figures, table V] }}{{pb}}{{cite book |last=Kleyer |first=Adolph |year=1886 |title=Lehrbuch der Goniometrie (Winkelmessungslehre) |language=de |publisher=Julius Maier |trans-title=Textbook of goniometry (angle measurement theory) |page=218 |url=https://archive.org/details/lehrbuchdergoni00kleygoog/page/n234/ }} demi-tangente in French;Examples:{{pb}}{{cite book |last1=Bonne |first1=Rigobert |author-link=Rigobert Bonne |last2=Desmarest |first2=Nicolas |year=1787 |title=Atlas encyclopédique |trans-title=Encyclopedic Atlas |language=fr |volume=2 |chapter=Analyse des cartes de cet atlas. Art. IX, Les mappemondes, depuis le No. 20 jusqu'au No. 26 |chapter-url=https://archive.org/details/atlasencyclopd02bonn/page/n112/mode/2up |page=107 }}{{pb}}{{cite journal |last=Kraentzel |first=Fernand |year=1914 |title=Calcul d'une Projection stéréographique horizontale ayant Bruxelles comme centre |language=fr |trans-title=Calculation of a horizontal stereographic projection having Brussels as the center |journal=Bulletin de la Société Royale Belge de Géographie |volume=38 |pages=246–253 |url=https://books.google.com/books?id=Wq5JAQAAMAAJ&pg=RA2-PA248&dq=%22demi+tangente%22 }} and especially half-tangent or semi-tangent in English, widely adopted in mathematical instruments used for astronomy and navigation starting in the mid 17th century,{{cite journal |last=Williams |first=Michael R.|last2=Tomash |first2=Erwin |year=2003 |title=The sector: its history, scales, and uses |journal=IEEE Annals of the History of Computing |volume=25 |number=1 |pages=34-47 |url=https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=1564e032ec5853d72e2a999e00e4ea1fb626da8a |doi=10.1109/MAHC.2003.1179877}} an era in Britain of high demand for trained navigators. By the late 19th century the name semi-tangent even appeared in general-purpose dictionaries,{{cite book |editor-last=Porter |editor-first=Noah |editor-link=Noah Porter |year= 1895 |title=Webster's International Dictionary of the English Language |publisher=Merriam |url=https://archive.org/details/webstersinternat02websuoft/page/1309/mode/1up |page=1309 |quote={{nobr|Sem′i-tan′gent}} {{nobr|(-tǎn′jent),}} n. (Geom.) The tangent of half an arc. }} {{pb}} {{cite book |title=A New English Dictionary on Historical Principles |type=Oxford English Dictionary |editor-last=Bradley |editor-first=Henry |editor-link=Henry Bradley |year=1914 |quote=semi-tangent, the tangent of half an arc. |publisher=Oxford University Press |volume=8, pt. 2: S–SH |page=436 |url=https://archive.org/details/newenglishdictio82murruoft/page/436/mode/1up |url-access=limited }} though it has since fallen out of currency.
Many historical and most modern sources refer to the half-tangent purely descriptively, e.g. as the tangent of half the angle,Examples: {{pb}} {{cite book |last=Newton |first=John |year=1658 |title=Trigonometria Britannica |publisher=R. & W. Leybourn |volume=1 |page=7 |url=https://archive.org/details/trigonometria00newt/page/7/ }} {{pb}} {{cite book |last=Simpson |first=Thomas |year=1740 |title=Essays on Several Curious and Useful Subjects, In Speculative and Mix'd Mathematicks |publisher=H. Woodfall, jun. |chapter=To determine the Length of a Degree of the Meridian [...] |chapter-url=https://archive.org/details/essaysonseveralc00simp/page/43/ |page=43}} {{pb}} {{cite journal |last=Wallace |first=W. |year=1826 |title=X. Investigation of Formulae, for finding the Logarithms of Trigonometrical Quantities from one another |journal=Transactions of the Royal Society of Edinburgh |volume=10 |issue=01 |pages=148–167 |doi=10.1017/s0080456800024224 }} {{pb}} {{cite journal |last=Hering |first=Carl |year=1918 |title=A surface having only a single side |journal=Journal of the Franklin Institute |volume=186 |number=2 |pages=233–241 |doi=10.1016/S0016-0032(18)90223-1 |url=https://scholar.archive.org/work/sgsm3tq3n5ch7kq5tpydimwzf4/access/ia_file/crossref-pre-1923-scholarly-works/10.1016%252Fs0016-0032%252818%252990080-3.zip/10.1016%252Fs0016-0032%252818%252990223-1.pdf }} {{pb}} {{cite journal |last=Luck |first=David G.C. |year=1949 |title=Properties of some wide-band phase-splitting networks |journal=Proceedings of the IRE |volume=37 |number=2 |pages=147-151 |doi=10.1109/JRPROC.1949.230938 }} {{pb}} {{cite journal |last=Williams |first=C. M. |year=1978 |title=An efficient algorithm for the piecewise linear approximation of planar curves |journal=Computer Graphics and Image Processing |volume=8 |issue=2 |pages=286–293 |doi=10.1016/0146-664x(78)90055-2 }} {{pb}} {{cite journal |last1=He |first1=Zeyuan |last2=Guest |first2=Simon D. |year=2020 |title=On rigid origami II: quadrilateral creased papers |journal=Proceedings of the Royal Society A |volume=476 |issue=2237 |page=20200020 |doi=10.1098/rspa.2020.0020 |doi-access=free }} or use it in mathematical expressions such as or without an explicit name. In the context of integral calculus, substituting is sometimes called the half-tangent substitution,Example: {{cite book |last=Hill |first=James M. |year=2022 |title=Mathematics of Particle-Wave Mechanical Systems |publisher=Springer |page=175 |url=https://books.google.com/books?id=MwefEAAAQBAJ&pg=PA175 |quote=[...] is used as a working variable for the half-tangent substitution }}. is sometimes misnamed the Weierstrass substitution,This substitution was used by Leonhard Euler to evaluate the integral in his 1768 integral calculus textbook, was described as a general method by Adrien-Marie Legendre in 1817, and was in wide use by the middle of the 19th century. In 1966, William Eberlein misattributed it to Karl Weierstrass (1815–1897); two decades later, James Stewart did the same in his popular calculus textbook. Later authors, citing Stewart, have sometimes referred to this as the Weierstrass substitution. {{pb}} {{cite book |last=Euler |first=Leonhard |authorlink=Leonhard Euler |date=1768 |title=Institutiones calculi integralis |volume=I |lang=la |trans-title=Foundations of Integral Calculus |chapter=§1.1.5.261 Problema 29 |publisher=Impensis Academiae Imperialis Scientiarum |pages=148–150 |chapter-url=http://eulerarchive.maa.org/docs/originals/E342sec1ch5.pdf }} E[https://scholarlycommons.pacific.edu/euler-works/342/ 342], [http://www.17centurymaths.com/contents/euler/intcalvol1/part1ch5.pdf Translation by Ian Bruce]. {{pb}} {{cite book |last=Legendre |first=Adrien-Marie |authorlink=Adrien-Marie Legendre |title=Exercices de calcul intégral |volume=2 |trans-title=Exercises in integral calculus |lang=fr |publisher=Courcier |year=1817 |url=https://archive.org/details/exercicescalculi02legerich/page/n267/ |page=245–246 }} {{pb}} {{cite journal |last=Eberlein |first=William Frederick |author-link=William Frederick Eberlein |year=1966 |title=The Circular Function(s) |journal=Mathematics Magazine |volume=39 |number=4 |pages=197–201 |doi=10.1080/0025570X.1966.11975715 |jstor=2688079 |quote=(Equations (3) {{nobr|[],}} (4) {{nobr|[],}} (5) {{nobr|[]}} are, of course, the familiar half-angle substitutions introduced by Weierstrass to integrate rational functions of sine, cosine.) }} {{pb}} {{cite book |last=Stewart |first=James |authorlink=James Stewart (mathematician) |title=Calculus |chapter=§7.5 Rationalizing substitutions |publisher=Brooks/Cole |year=1987 |page=431 |isbn=9780534066901 |chapter-url=https://archive.org/details/calculus00stew_3/page/431 |chapter-url-access=limited |quote=The German mathematician Karl Weierstrass (1815–1897) noticed that the substitution {{math|t {{=}} tan(x/2)}} will convert any rational function of {{math|sin x}} and {{math|cos x}} into an ordinary rational function. }} {{pb}} {{cite journal |last1=Jeffrey |first1=David J. |last2=Rich |first2=Albert D. |year=1994 |title=The evaluation of trigonometric integrals avoiding spurious discontinuities |journal=Transactions on Mathematical Software |volume=20 |issue=1 |pages=124–135 |doi=10.1145/174603.174409 |doi-access=free |quote=One standard substitution used by all systems is [...] first suggested by Weierstrass [Stewart 1989]. }} {{pb}} {{cite book |last=Merlet |first=Jean-Pierre |year=2004 |chapter=A Note on the History of Trigonometric Functions |editor-last=Ceccarelli |editor-first=Marco |title=International Symposium on History of Machines and Mechanisms |publisher=Kluwer |pages=195–200 |doi=10.1007/1-4020-2204-2_16 |isbn=978-1-4020-2203-6 |chapter-url=https://ia800201.us.archive.org/15/items/springer_10.1007-1-4020-2204-2/10.1007-1-4020-2204-2.pdf#page=205 |quote=All the authors seem to agree that this substitution was first used by Weierstrass (1815-1897) and is often called Weierstrass substitution [or] Weierstrass t-substitution [Stewart 94].}} {{pb}} {{cite web |last=Weisstein |first=Eric W. |authorlink= Eric W. Weisstein |year=2011 |title=Weierstrass Substitution |url=https://mathworld.wolfram.com/WeierstrassSubstitution.html |website=MathWorld |access-date=2020-04-01 }} in Russian is called the universal trigonometric substitution,Examples: {{pb}}{{cite book |last=Piskunov |first=Nikolai |author-link= Nikolai Piskunov |title=Differential and Integral Calculus |url=https://archive.org/details/n.-piskunov-differential-and-integral-calculus-mir-1969/page/379/ |publisher=Mir |year=1969 |page=379}} {{pb}} {{cite book |last1=Zaitsev |first1=V. V. |last2=Ryzhkov |first2=V. V. |last3=Skanavi |first3=M. I. |year=1978 |title=Elementary Mathematics: A Review Course |publisher=Mir |page=388 |url=https://catalog.hathitrust.org/Record/000248796 |url-access=subscription }} or is sometimes just called {{mvar|t}}-substitution,Examples: {{pb}} {{cite journal |last1=Gutierrez |first1=Jaime |last2=Recio |first2=Tomas |year=1998 |title=Advances on the simplification of sine–cosine equations |journal=Journal of Symbolic Computation |volume=26 |number=1 |pages=31-70 |url=https://core.ac.uk/download/pdf/82441586.pdf |doi=10.1006/jsco.1998.0200}} {{pb}} {{cite conference |last1=Mulholland |first1=Jamie |last2=Monagan |first2=Michael |year=2001 |title=Algorithms for trigonometric polynomials |book-title=Proceedings of the 2001 international symposium on Symbolic and algebraic computation |conference=ISSAC, University of Western Ontario, July 2001 |pages=245-252 |url=http://www.cecm.sfu.ca/personal/mmonagan/papers/trigpoly.pdf |doi=10.1145/384101.384135}} {{pb}} {{cite journal | last=Stewart |first=Seán M. |year=2022 |title=Integrating rational functions of sine and cosine using the rules of Bioche |journal=International Journal of Mathematical Education in Science and Technology |volume=53 |issue=6 |pages=1688–1700 |doi=10.1080/0020739X.2021.1912841 }} but modern sources more often give it no name at all or use a descriptive compound modifier as in tangent half-angle substitution.For example: Hamming (1983) [1977] Digital Filters https://archive.org/details/digitalfilters0000hamm/page/216 A similar compound modifier is often used for the half-angle tangent formula in trigonometry.Examples: {{pb}} {{cite book |last=Wylie |first=Clarence Raymond |year=1955 |title=Plane Trigonometry |publisher=McGraw-Hill |url=https://archive.org/details/planetrigonometr0000wyli/page/207/ |page=207 |url-access=limited }} {{pb}} {{cite book |last=Gaynor |first=Frank |year=1959 |title=Concise Dictionary of Science |publisher=Philosophical Library |page=218 |url=https://archive.org/details/concisedictionar00gayn/page/218/ |url-access=limited }} {{pb}} {{cite journal |last1=Teets |first1=Donald A. |last2=Whitehead |first2=Karen |year=1998 |title=Computation of Planetary Orbits |journal=College Mathematics Journal |volume=29 |number=5 |pages=397–404 |doi=10.1080/07468342.1998.11973975 |doi-access=free }} Number theorists call the half-tangent the rational parameter for a point on the unit circle.Examples: {{harvnb|Tan|1996}}. {{pb}} {{cite book |last1=Silverman |first1=Joseph H. |last2=Tate |first2=John Torrence |title=Rational Points on Elliptic Curves |publisher=Springer |year=2015 |edition=2nd |page=3 }} Sometimes, notably in directional statistics, it is called the stereographic projection. Other names include half-slope{{harvnb|Wildberger|2017}}; {{harvnb|Wildberger|2018}} and tan-half-angle.Examples: {{pb}} {{cite book |last1=Crane |first1=Carl D., III |last2=Duffy |first2=Joseph |title=Kinematic analysis of robot manipulators |publisher=Cambridge University Press |year=1998 }} {{pb}} {{cite journal |last=Selig |first=Jon M. |title=Exponential and Cayley maps for dual quaternions. |journal=Advances in applied Clifford algebras |volume=20 |number=3 |year=2010 |pages=923–936 }} The name half-tangent is also still used, especially in kinematics.Examples:{{pb}}{{cite journal |last1=Wallace |first1=Donald M. |last2=Freudenstein |first2=Ferdinand |author2-link=Ferdinand Freudenstein |title=The displacement analysis of the generalized tracta coupling |year=1970 |journal=Journal of Applied Mechanics |volume=37 |issue=3 |pages=713-719 |doi=10.1115/1.3408601 |url=https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=c86478f592250de50ddc214dae48f0d2d5f0c897 }}{{pb}}{{cite journal |last=Keler |first=Max |year=1979 |title=Dual-vector half-tangents for the representation of the finite motion of rigid bodies |journal=Environment and Planning B: Planning and Design |volume=6 |number=4 |pages=403–412 |doi=10.1068/b060403 }}{{pb}}{{cite journal |last=Bengtson |first=Carl Anders |year=1983 |title=Easy Solutions to Stereonet Rotation Problems |department=Geologic Notes |journal=American Association of Petroleum Geologists Bulletin |volume=67 |number=4 |pages=706-713 |doi=10.1306/03B5B687-16D1-11D7-8645000102C1865D }}{{pb}}{{cite journal |last1=Shoham |first1=Moshe |last2=Jen |first2=Fu-Hua |year=1993 |title=On rotations and translations with application to robot manipulators |journal=Advanced Robotics |volume=8 |number=2 |pages=203-229 |doi=10.1163/156855394X00464 }}{{pb}}{{cite conference |last=Anderson |first=James A.D.W. |year=2002 |title=Exact Numerical Computation of the Rational General Linear Transformations |book-title=Proc. SPIE 4794, Vision Geometry XI |conference=Int'l Symposium on Optical Science and Technology, Seattle, Jul 2002 |editor1-last=Latecki |editor1-first=L.J. |editor2-last=Mount |editor2-first=D.M. |editor3-last=Wu |editor3-first=A.Y. |publisher=SPIE |doi=10.1117/12.446427 }}{{pb}}{{cite conference |last1=Kim |first1=Sungsu |last2=SenGupta |first2=Ashis |year=2016 |title=Regressions Involving Circular Variables: An Overview |editor1-last=Chattopadhyay |editor1-first=A. |editor2-last=Chattopadhyay |editor2-first=G. |book-title=Statistics and its Applications. PJICAS 2016. |conference=Platinum Jubilee Int'l Conference on Applications of Statistics, Kolkata, Dec 2016 |publisher=Springer |pages=25–33 |doi=10.1007/978-981-13-1223-6_3 |url=https://www.researchgate.net/publication/327056559 }}{{pb}}{{cite journal |last1=Hassan |first1=Mosavverul |last2=Coutsias |first2=Evangelos A. |year=2021 |title=Protein secondary structure motifs: A kinematic construction |journal=Journal of Computational Chemistry |volume=42 |number=5 |pages=271-292 |doi=10.1002/jcc.26448 }}{{pb}}{{cite journal |last1=Garcia |first1=Ronaldo |last2=Reznik |first2=Dan |last3=Moses |first3=Peter |last4=Gheorghe |first4=Liliana |year=2022 |title=Triads of conics associated with a triangle
|journal=KoG |issue=26 |pages=16–32 |publisher=Croatian Society for Geometry and Graphics |doi=10.31896/k.26.2 |arxiv=2112.15232 |url=https://hrcak.srce.hr/file/417127 }} This article will consistently adopt the name half-tangent for convenience.
The trigonometric half-tangent should not be confused with half-tangent meaning a ray tangent to a curve, half of a tangent line.
The hyperbolic half-tangent is rarely named, and is usually just used symbolically as e.g. or or sometimes descriptively called something like the hyperbolic tangent of half the angle.Examples: {{pb}} {{cite thesis |last=Kowalsky |first=William Paul |year=1993 |type=PhD thesis |title=Quaternion representations of the de Sitter and the Lorentz groups |publisher=New York University |url=https://www.proquest.com/openview/c2fa90647931bb5321e1284872c39985 |url-access=subscription |page=4 }} {{pb}}
{{cite journal |last=Sobolev |first=L. G. |year=1995 |title=Preliminary estimation of the type and parameters of logarithmic distributions of measurement series |journal=Measurement Techniques |volume=38 |number=9 |pages=966–971 |doi=10.1007/bf00979072 }} {{pb}} Shapiro (2005) "Soft Information in Interference Cancellation Based Multiuser Detection" https://www.mitre.org/sites/default/files/pdf/05_0892.pdf {{pb}} 2015: Safety and Reliability of Complex Engineered Systems https://books.google.com/books?id=C9GYCgAAQBAJ&pg=PA836 It has been specifically named the Lorentzian stereographic representation, Pavel Krtouš and Jiřı́ Podolský (2004) [https://journals.aps.org/prd/pdf/10.1103/PhysRevD.69.084023 "Gravitational and electromagnetic fields near an anti–de Sitter–like infinity"] or the menhir.J. Kocik, “Cromlech, menhirs and celestial sphere: an unusual representation of the Lorentz group,” https://arxiv.org/abs/1604.05698. In the context of higher-dimensional hyperbolic spaces, the (unsigned) half-tangent of a geodesic arc length is sometimes called the pseudo-chordal distance, the pseudo-hyperbolic distance, or the hyperbolic length. The substitution has been called the hyperbolic tangent half-argument substitution,Stewart (2017) How to Integrate It and the half-argument identity for the hyperbolic tangent has been called the hyperbolic formula for the tangent half-angleVallado (2001) Fundamentals of Astrodynamics and Applications and the half-tanh relation.Venables (1970) An Analytical Approach to Physical Theory This article will adopt the name (hyperbolic) half-tangent for convenience.
Tangent addition
When real numbers and are taken to be half-tangents representing circular or hyperbolic rotations, those rotations can be composed using the circular {{nobr|()}} or hyperbolic {{nobr|()}} tangent addition operations, respectively.
The (circular) tangent addition operation is called the circle sum in {{harvp|Wildberger|2017}}. {{harvp|Kocik|2012}} calls it tangent addition. {{harvp|Abrate|Barbero|Cerruti|Murru|2014}} don't give it a name, but use the symbol
{{pb}}
{{harvp|Ungar|1998}} calls hyperbolic tangent addition Einstein addition after Albert Einstein, and uses the symbol . {{harvp|Hardy|2015}} defines it using the symbol but does not name it. {{harvp|Kocik|2012}} uses the symbol for both circular and hyperbolic tangent addition operations. Generalized to an operation on points in the complex unit disk (the conformal disk model of the hyperbolic plane), Ungar calls it Möbius addition. {{pb}}
... more to come here ...
= Circular tangent addition =
File:Stereographic sum operator.png
File:Stereographic sum, geometric construction.png with the help of an auxiliary unit hyperbola. Take the inverse stereographic projection through two antipodal points on the hyperbola of each of the addends, then join the two projected points and intersect the resulting line with the equatorial axis. Construction by {{harvp|Kocik|2012}}.]]
The composition of two planar rotations and is the new rotation which results from rotating first by and then by (planar rotation is commutative, ). When rotations are represented as complex numbers, the composition operation is complex multiplication, . When rotations are represented as angle measures, composition is addition . When rotations are represented as matrices, composition is matrix multiplication . When rotations are represented as half-tangents, composition is a circular tangent addition operation defined by
:
h_1 \oplus h_2 &:= \frac{h_1 + h_2}{1 - h_1h_2}
= \tan\tfrac12(\theta_1 + \theta_2)
= i \frac{1 - z_1z_2}{1 + z_1z_2} \\[5mu]
&\phantom{:}= \tan\left(\arctan h_1 + \arctan h_2\right).
\end{align}
The tangent addition identity on which this operation is based was proved by Jakob Hermann in 1706 and independently by several other mathematicians shortly afterward.{{cite journal |last=Hermann |first=Jakob |author-link= Jakob Hermann |year=1706 |title=Disquisitio dioptrica de curvatura radiorum visivorum atmosphaeram trajicientium cui accedit indefinita sectio angularis ope tangentium et secantium |trans-title=A dioptric analysis of the curvature of visible rays traversing the atmosphere to which an indefinite angular section is approached by means of tangents and secants |language=la |journal=Acta Eruditorum |volume=1706 |pages=256–263 |url=https://archive.org/details/s1id13206750/page/256/ }}{{cite journal |last=Tweddle |first=Ian |year=1991 |title=John Machin and Robert Simson on Inverse-tangent Series for {{mvar|π}} |journal= Archive for History of Exact Sciences |volume=42 |number=1 |pages=1-14 |doi= 10.1007/BF00384331 |jstor=41133896 }}
If the two half-tangents are written as quotients,
:
the relation to complex multiplication becomes clear:
:
As with multiplication and addition, this operation has an inverse , corresponding to division and subtraction
:
h_1 \ominus h_2 &:= \frac{h_1 - h_2}{1 + h_1h_2}
= \tan\tfrac12(\theta_1 - \theta_2)
= i \frac{z_2 - z_1}{z_2 + z_1} \\[5mu]
&\phantom{:}= h_1 \oplus (-h_2) = \tan\left(\arctan h_1 - \arctan h_2\right).
\end{align}
This tangent difference operation yields the half-tangent of after the circle has been rotated so that is at the origin.
= Hyperbolic tangent addition =
The operation is the circular analog of a hyperbolic tangent addition operation
:
h_1 \boxplus h_2
:= \frac{h_1 + h_2}{1 + h_1h_2}
= \tanh(\operatorname{artanh} h_1 + \operatorname{artanh} h_2),
with inverse operation
:
h_1 \boxminus h_2 := h_1 \boxplus (-h_2) = \frac{h_1 - h_2}{1 - h_1h_2}.
Because in special relativity the operation is the composition law for parallel velocities (in a coordinate system with natural units where the speed of light {{nobr|1=)}} it is sometimes called Einstein addition.The hyperbolic tangent addition operation was first mentioned in the context of special relativity by Henri Poincaré in a 1905 letter to Hendrik Lorentz, reprinted in {{cite book|last=Miller |first=Arthur I. |chapter=5. On Some Other Approaches to Electrodynamics in 1905 |title=In Frontiers of Physics: 1900–1911 |pages=79–80, fig. 5.5 |publisher=Birkhäuser |year=1986 |doi=10.1007/978-1-4684-0548-4_1 }}
The circular and hyperbolic operations are related by
:
(h_1 \oplus h_2)i &= (h_1i) \boxplus (h_2i), &
(h_1 \ominus h_2)i &= (h_1i) \boxminus (h_2i), \\[5mu]
(h_1 \boxplus h_2)i &= (h_1i) \oplus (h_2i), &
(h_1 \boxminus h_2)i &= (h_1i) \ominus (h_2i),
\end{align}
where is the imaginary unit.
= Point at infinity =
Half-tangents are naturally values on the projectively extended real line . A half-turn rotation is represented by the complex number As this is the center of the stereographic projection, it is projected to the point at infinity. If half-tangents are interpreted as ratios, this is the ratio
The tangent sum is well defined for
:
\infty \oplus h &= \frac{h + \infty}{1 - h\infty} = -\frac{1}{h}, \\[10mu]
\infty \boxplus h &= \frac{h + \infty}{1 + h\infty} = \!\!\phantom{-}\frac{1}{h}, \\[10mu]
\infty \oplus \infty &= \infty \boxplus \infty = 0, \\[6mu]
0 \oplus \infty &= 0 \boxplus \infty = \infty.
\end{align}
= Singularities =
Corresponding to the invariance of the speed of light, and analogous to ordinary multiplication by or the values absorb other arguments to the hyperbolic tangent sum For any value such that (including {{nobr|1=),}}
:
h \boxplus 1 = h \boxminus (-1) &= \frac{h + 1}{1 + h} = 1, \\[6mu]
h \boxminus 1 = h \boxplus (-1) &= \frac{h - 1}{1 - h} = -1.
\end{align}
The exceptional sum and the exceptional differences and are undefined.
For complex-valued arguments, the circular tangent sum has singularities at the imaginary units. For any value such that {{cite journal |last=Plücker |first=Julius |title=Über solche Puncte, die bei Curven einer höhern Ordnung als der zweiten den Brennpuncten der Kegelschnitte entsprechen |trans-title=About such points, in curves of higher order than second, corresponding to the foci of conic sections |lang=de |journal=Crelle's Journal |volume=10 |year=1833 |pages=84-91 |doi=10.1515/crll.1833.10.84 |url=https://archive.org/details/journalfurdierei9101unse/page/84/ }}
:
h \oplus i = h \ominus (-i) &= \frac{h + i}{1 - ih} = i, \\[6mu]
h \oplus (-i) = h \ominus i &= \frac{h - i}{1 + ih} = -i.
\end{align}
The sum and differences and are undefined.
= Commutative group structure =
The projectively extended real line is a commutative group under {{harvp|Wildberger|2017}} p. 95 It is associative, It is commutative, It has identity element Each element has an inverse This group is isomorphic to the circle group (the complex unit circle under multiplication), the group of angle measures on the periodic interval under addition modulo and the special orthogonal group of planar Euclidean rotation matrices.
The interval is a commutative group under It is associative, It is commutative, It has identity element Each element has an inverse This group is isomorphic to the right branch of the split-complex unit hyperbola under multiplication, to the group of hyperbolic-function arguments on the real line under addition, and to one connected component of the indefinite special orthogonal group of rotation matrices in the pseudo-Euclidean plane with signature
the projectively extended real line punctured at the points is also a commutative group under , isomorphic to multiplication on both branches of the split-complex unit hyperbola and to . This group has two connected components: the interval and the "exterior interval"
The projectively extended line restricted to rational numbers has analogous structure under : it is isomorphic to the group of rational points on the complex unit circle under multiplication. Likewise forms structures under isomorphic to the rational points on the split-complex unit hyperbola under multiplication.{{sfn|Tan|1996}}
= Multiple sum =
The tangent sum of several half-tangents is the ratio of sums of alternating elementary symmetric polynomials,
{{harvp|Casey|1888|loc=[https://archive.org/details/treatiseonplanet00caseuoft/page/37 §§45, 47, pp. 37–39]}}{{pb}}
{{harvp|Wildberger|2017|loc=p. 96–97}}
:
&h_1 \oplus h_2
= \frac{h_1 + h_2}{1 - h_1h_2}, \qquad
h_1 \oplus h_2 \oplus h_3
= \frac{h_1 + h_2 + h_3 - h_1h_2h_3}{1 - h_1h_2 - h_1h_3 - h_2h_3}, \quad \ldots
\end{aligned}
The multiple hyperbolic tangent sum is the above with each minus sign replaced by a plus sign.
In general, letting be the {{mvar|m}}th elementary symmetric polynomial,
{{harvp|Casey|1888|loc=[https://archive.org/details/treatiseonplanet00caseuoft/page/39 §48, p. 39]}}{{pb}}
{{cite journal |last=Peles |first=Oren |title=92.06 A relation between the roots of a polynomial and its coefficients |journal=The Mathematical Gazette |volume=92 |number=523 |year=2008 |pages=76-81 |doi=10.1017/S0025557200182580 }}
:
h_1 \boxplus \cdots \boxplus h_k &= \frac
{\sum\limits_{m \text{ odd}} e_m(h_1,..., h_k) }
{\sum\limits_{m \text{ even}} e_m(h_1,..., h_k) }, \\[10mu]
h_1 \oplus \cdots \oplus h_k &= \frac1i \left(h_1i \boxplus \cdots \boxplus h_ki\right).
\end{align}
= Iterated tangent sum =
File:Iterated stereographic sum of a half-tangent.png
File:Iterated stereographic sum.png
File:Iterated stereographic sum – angle measures.png
Analogous to integer multiplication of angle measures or exponentiation of complex numbers, we can define an iterated tangent sum operation,{{harvp|Abrate|Barbero|Cerruti|Murru|2014}} use the symbol for the tangent sum and the notation for tangent sum iterated times.
:
h^{\boxplus k} := \underbrace{h \boxplus h \boxplus \dots \boxplus h}_{k \text{ times}},
using superscript notation rather than an inline symbol such as because unlike multiplication the operation is neither commutative nor associative but inherits properties from complex exponentiation.
The formula for was instrumental in John Pell (1647), Controversiae de vera circuli mensura. {{pb}}
Others can be found in: {{pb}}
{{cite journal |last=De Lagny |first=Thomas |author-link=Thomas Fantet de Lagny |title=Supplément de trigonometrie, contenant Deux Theoremes generaux sur les Tangentes & les Secantes des angles multiples |url=https://archive.org/details/histoiredelacad05laca/page/254/ |journal=Memoires de Mathematique & de Physique de l’Académie royale des sciences |volume=1705 |year=1730 |pages=254–263}}{{pb}}
Hassler (1826) Elements of analytic trigonometry, plane and spherical https://archive.org/details/elementsanalyti00hassgoog/page/n77/{{pb}}
{{cite journal |last=Kobayashi |first=Yukio |year=2013 |title=Tangent Double Angle Identity |department=Proof Without Words |journal=College Mathematics Journal |volume=44 |number=1 |page=47 |doi=10.4169/college.math.j.44.1.047 }}{{pb}}
Wildberger
:
h^{\oplus 0} &= \dfrac{0}{1}, \quad
h^{\oplus 1} = \dfrac{h}{1}, \quad
h^{\oplus 2} = \dfrac{2h}{1 - h^2}, \quad
h^{\oplus 3} = \dfrac{3h - h^3}{1 - 3h^2}, \\[10mu]
h^{\oplus 4} &= \dfrac{4h - 4h^3}{1 - 6h^2 + h^4}, \quad
h^{\oplus 5} = \dfrac{5h - 10h^3 + h^5}{1 - 10h^2 + 5h^4}, \quad \ldots
\end{align}
The iterated hyperbolic tangent sum is the above with each minus replaced by a plus.
For a general integer , the coefficients of the polynomials in numerator and denominator are alternating binomial coefficients, the quotient
{{cite journal |last=Machin |first=John |author-link=John Machin |year=1738 |title=The Solution of Kepler's Problem |journal=Philosophical Transactions of the Royal Society |volume=40 |issue=447 |pages=205–230 |doi=10.1098/rstl.1737.0037 |doi-access=free }}{{pb}}
{{cite techreport |title=HAKMEM |author-last1=Beeler |author-first1=Michael |author-first2=Ralph William |author-last2=Gosper |author-link2=Bill Gosper |author-last3=Schroeppel |author-first3=Richard C. |author-link3=Richard C. Schroeppel |year=1972 |publisher=MIT AI Lab |id=Memo 239 |type=report |chapter-url=https://web.archive.org/web/20190906054920/http://home.pipeline.com/~hbaker1/hakmem/recurrence.html#item16 |chapter=Item 16}}{{pb}}
{{cite journal |last=Calcut |first=Jack S. |year=2010 |title=Grade School Triangles |journal=American Mathematical Monthly |volume=117 |number=8 |pages=673–685 |doi=10.4169/000298910X515749 |url=https://isis2.cc.oberlin.edu/faculty/jcalcut/gst.pdf}}
:
h^{\boxplus k}
&= \frac{(1 + h)^k - (1 + h)^{-k}}{(1 + h)^k + (1 + h)^{-k}}
= \frac
{\sum\limits_{m \text{ odd }} \!\Bigl(\begin{matrix}k \\[-6mu] ~\!\!m~\!\! \end{matrix}\Bigr) h^m}
{\sum\limits_{m \text{ even}} \!\Bigl(\begin{matrix}k \\[-6mu] ~\!\!m~\!\! \end{matrix}\Bigr) h^m} , \\[5mu]
h^{\oplus k}
&= -i\frac{(1 + hi)^k - (1 + hi)^{-k}}{(1 + hi)^k + (1 + hi)^{-k}}
= -i \frac
{\sum\limits_{m \text{ odd }} \!\Bigl(\begin{matrix}k \\[-6mu] ~\!\!m~\!\! \end{matrix}\Bigr) (hi)^m}
{\sum\limits_{m \text{ even}} \!\Bigl(\begin{matrix}k \\[-6mu] ~\!\!m~\!\! \end{matrix}\Bigr) (hi)^m} \\
&= -i (hi)^{\boxplus k}.
\end{align}
The {{mvar|k}}th roots of these functions, values for which are the stereographic projection of the roots of unity.
The iterated tangent sum operation satisfies identities analogous to exponentiation of complex numbers:
:
h_1^{\oplus k} \oplus h_2^{\oplus k} &= (h_1 \oplus h_2)^{\oplus k}, \\[10mu]
h^{\oplus k_1} \oplus h^{\oplus k_2} &= h^{\oplus k_1 + k_2}, \\[10mu]
\bigl(h^{\oplus k_1\!}\bigr)^{\oplus k_2} &= h^{\oplus k_1k_2}, \\[10mu]
\end{align}
and likewise for the iterated hyperbolic tangent sum.
The iterated tangent sum can be generalized to an arbitrary (real or complex) "exponent"
:
h^{\boxplus w} &:= \tanh(w \operatorname{artanh} h), \\[6mu]
h^{\oplus w} &:= \tan(w \arctan h).
\end{align}
= Square root =
File:Tangent-sum square root.png
In particular, an analog of the square root complex number or the half angle measure is the "quarter-tangent" (for {{nobr|)}} satisfying This identity – expressed in the geometrical language of Euclid's Elements – was used by Archimedes in Measurement of a Circle (ca. 250 BCE) to construct a 96-gon as an approximation of a circle.{{pb}}{{cite journal |last=Miel |first=George |title=Of calculations past and present: the Archimedean algorithm |journal=American Mathematical Monthly |volume=90 |number=1 |year=1983 |pages=17-35 |jstor=2975687 |doi=10.1080/00029890.1983.11971147 |url=https://www.maa.org/sites/default/files/images/images/upload_library/22/Chauvenet/Miel.pdf }}
:
\sqrt[\oplus]{h} = \frac{h}{1 + \sqrt{1 + h^2}} = \frac{-1 + \sqrt{1+h^2}}{h}.
The other branch of the square root represents the antipodal rotation,
:
\infty \oplus \sqrt[\oplus]{h} = -\frac1{\sqrt[\oplus]{h} } = \frac{h}{1 - \sqrt{1 + h^2}} = \frac{-1 - \sqrt{1+h^2}}{h}.
For the hyperbolic tangent sum, the analog of square root, satisfying is
:
\sqrt[\boxplus]{h} = \frac{h}{1+\sqrt{1-h^2}} = \frac{1-\sqrt{1-h^{2}}}{h}.
The other branch of the square root represents a point on the other branch of the hyperbola,
:
\infty \boxplus \sqrt[\boxplus]{h} = \frac1{\sqrt[\boxplus]{h} } = \frac{h}{1-\sqrt{1-h^2}} = \frac{1+\sqrt{1-h^{2}}}{h}.
Notice that when is not a real number.
= Circular–hyperbolic identities =
The three operations and can be related to each-other via quotient identities,
:
h_1 \oplus h_2\,
= \frac{h_1 \boxplus h_2}{1 \ominus h_1h_2}
&= \frac{h_1 + h_2}{1 - h_1h_2},
&
h_1 \boxplus h_2\,
= \ \ \,\,\frac{h_1 \oplus h_2}{1 \oplus h_1h_2} \ \ \ \,
&= \frac{h_1 + h_2}{1 + h_1h_2}, \\[10mu]
\frac{h_1 \oplus h_2}{h_1 \boxplus h_2}
= \ \frac{h_1 \boxminus h_2}{h_1 \ominus h_2}\
&= 1 \oplus h_1h_2,
&
\frac{h_1 \boxplus h_2}{h_1 \boxminus h_2}
= \ \frac{(h_1 \oplus h_2)^{\boxplus2}}{(h_1 \ominus h_2)^{\boxplus2}}\
&= 1 \oplus \frac{h_2^{\oplus2}}{h_1^{\oplus2}},\\[10mu]
\frac{h_1 \oplus h_2}{h_1 \boxminus h_2}
= \ \frac{h_1 \boxplus h_2}{h_1 \ominus h_2}\
&= 1 \oplus \frac{h_2}{h_1},
&
\frac{h_1 \oplus h_2}{h_1 \ominus h_2}
= \ \frac{(h_1 \boxplus h_2)^{\oplus2}}{(h_1 \boxminus h_2)^{\oplus2}}\
&= 1 \oplus \frac{h_2^{\boxplus2}}{h_1^{\boxplus2}},
\end{align}
and product identities,
:
(h_1 \oplus h_2)(h_1 \boxplus h_2) &= h_1^2\oplus h_2^2 + (h_1h_2)^{\oplus2},\\[6mu]
(h_1 \ominus h_2)(h_1 \boxminus h_2) &= h_1^2\oplus h_2^2 - (h_1h_2)^{\oplus2},\\[6mu]
(h_1 \oplus h_2)(h_1 \boxminus h_2) &= (h_1^2\boxminus h_2^2)(1 \oplus h_1h_2), \\[6mu]
(h_1 \ominus h_2)(h_1 \boxplus h_2) &= (h_1^2\boxminus h_2^2)(1 \ominus h_1h_2), \\[6mu]
(h_1 \oplus h_2)(h_1 \ominus h_2) &= (h_1 \boxplus h_2)(h_1 \boxminus h_2) = h_1^2\boxminus h_2^2.
\end{align}
The last of these is the tangent-sum analog of the difference of two squares.
= Tangent addition series =
Analogous to ordinary addition series, it is possible to add infinitely many quantities using the tangent addition operation. We can write
:
Where such a series converges, it can be written as an ordinary series of arctangents, equal up to some integer multiple of :
:
\bigoplus_{k=1}^\infty h_k
&= \tan\tfrac12\biggl(\sum_{k=1}^\infty 2\arctan h_k \biggr) \\[5mu]
&= \tan\tfrac12(\,2\arctan h_1 + 2\arctan h_2 + 2\arctan h_3 + \cdots ).
\end{align}
Antipodal, inverse, supplementary, and complementary rotations
File:Opposite, complementary, and supplementary half-tangents.png
In the figure, the original rotation and its representations as a point on the circle and a half-tangent are drawn in red.
= Antipodes =
Two rotations and are said to be diametrically opposite or antipodal if they are separated by a half-turn: as complex numbers as angle measures or as half-tangents {{harvp|Penner|1971}} p. 41
Given a rotation the antipodal rotation can be represented as a complex number by as an angle measure by or as a half-tangent by (Green in the figure.)
= Inverses =
Two rotations and are said to be inverse if they compose to the identity rotation: as complex numbers as angle measures or as half-tangents i.e. inverse half-tangents are additive inverses{{harvp|Penner|1971}} p. 41
Given a rotation the inverse rotation can be represented as a complex number by as an angle measure by or as a half-tangent by (Orange in the figure.)
= Supplements =
Two rotations are said to be supplementary if they compose to make a half turn: as complex numbers, as angle measures or as half-tangents i.e. supplementary half-tangents are reciprocals.{{harvp|Penner|1971}} p. 41
Given a rotation the supplementary rotation can be represented as a complex number by as an angle measure by or as a half-tangent by (Purple in the figure.)
For half-tangents and and their respective supplements and
:
= Complements =
Two rotations are said to be complementary if they compose to make a quarter turn: as complex numbers, as angle measures or as half-tangents
Given a rotation the complementary rotation can be represented as a complex number by as an angle measure by or as a half-tangent by (Blue in the figure.)
Two rotations are each antipodal to the other's complement if they compose to make a negative quarter turn: as complex numbers, as angle measures or as half-tangents
Given a rotation the complement of its antipodal rotation can be represented as a complex number by as an angle measure by or as a half-tangent by
= Quarter-turned rotations =
Let be the quarter turn represented as the complex number the angle measure or the half-tangent
Given a rotation the supplement of its complement is the quarter-turned rotation represented as complex number by as an angle measure by or as a half-tangent by
The complement of its supplement is the quarter-turned rotation represented as complex number by as an angle measure by or as a half-tangent by
Circular distances
File:Arc, chord, half-tangent, versine, sine.png
File:Graph of arc, chord, half-tangent, versine, sine.png
Between two rotations or two points on a circle, there are several related concepts of distance or separation. In the following, and likewise for
= Intrinsic distance =
The distance intrinsic to the circle is proportional to arc length and is called angular distance, circular distance, or angle measure. For points represented as angle measures this is the ordinary difference.More precisely, angular distance is the absolute value of the remainder after subtracting the difference rounded to the nearest multiple of a full turn. For complex numbers it is the absolute value of the argument of the quotient. For half-tangents this is the absolute value of twice the arctangent of the stereographic difference. Here we measure angle in radians.
:
= 2\arctan|h_1 \ominus h_2|
= \left|\operatorname{rem}(\theta_1 - \theta_2, 2\pi)\right|
= \left|\arg\frac{z_1}{z_2}\right|,
\end{align}
where is a rounding modulo operation.
= Stereographic distance =
The half-tangent or stereographic distance between two points on the circle is proportional to the distance after the circle has been stereographically projected through the point antipodal to one of them. This can also be thought of as the half-tangent of one point after the circle has been rotated so the other is at the origin.
:
= |h_1 \ominus h_2| = \left|\frac{h_1 - h_2}{1 + h_1h_2}\right|
= \left|\tan\tfrac12(\theta_1 - \theta_2)\right|
= \left|\frac{z_1 - z_2}{z_1 + z_2}\right|.
\end{align}
This distance function is not a metric under the conventional definition because it does not satisfy the triangle inequality under addition (making it a semimetric). However, any three points do satisfy a triangle inequality under tangent sum,
:
with equality whenever lies on the shorter arc between and
= Chordal distance =
The chordal distance between two rotations or points on the circle is proportional to the length of a chord, the extrinsic Euclidean distance when the circle is embedded in the Euclidean plane (or complex plane). Here we normalize these distances to a circle of unit diameter (sometimes chordal distances are doubled, representing distances for a unit-radius circle).Caratheodory [https://archive.org/details/theory-of-functions-of-a-complex-variable-v-i-ii-by-c.-caratheodory-clr/page/n91/ p. 81] describes the chordal distance on the sphere, and calls the stereographic distance in the hyperbolic plane the "pseudo-chordal distance".
:
= \frac
h_1 - h_2 |
= \left|\sin\tfrac12(\theta_1 - \theta_2)\right|
= \tfrac12\left|z_1 - z_2\right|.
\end{align}
Also see § Half-angle identities below.
= Normal distance =
The normal distance between two points on the circle, historically called the versed sine (versine) and corresponding to the sagitta [arrow] of twice the arc, is the distance between the projections of the two points onto the diameter through one of them. Here we normalize it to a unit-diameter circle (haversine).
:
= \frac{(h_1 - h_2)^2}{\bigl(1 + h_1^2\bigr)\bigl(1 + h_2^2\bigr)}
= \tfrac12 \bigl(1 - \cos(\theta_1 - \theta_2) \bigr)
= \tfrac14\left|z_1 - z_2\right|^2.
\end{align}
= Relation between distances =
Letting
:
\kappa &= 2\arctan \sigma = 2\arcsin \chi = 2\arccos(1 - \nu) \\[4mu]
\sigma &= \tan\tfrac12 \kappa = \frac{\chi}{\sqrt{1 - \chi^2}} = \sqrt{\frac{\nu}{1 - \nu}} , \\[8mu]
\chi &= \sin\tfrac12 \kappa = \frac{\sigma}{\sqrt{1 + \sigma^2}} = \sqrt{\nu}, \\[8mu]
\nu &= \tfrac12(1 - \cos\kappa) = \frac{\sigma^2}{1 + \sigma^2} = \chi^2 .
\end{align}
Differential geometry
File:Half-tangent differential.png
The projectively extended real line is a model for the circle under the differential relation
:
where is angle measure on the circle and {{cite journal |last=Eberlein |first=William Frederick |author-link=William Frederick Eberlein |year=1954 |title=The Elementary Transcendental Functions |journal=American Mathematical Monthly |volume=61 |number=6 |pages=386–392 |doi=10.1080/00029890.1954.11988481}}
To differentiate an arbitrary function of half-tangent uniformly with respect to the circle,
:
To integrate an arbitrary function of half-tangent uniformly with respect to the circle,
:
In particular, the derivative of the identity function is
:
and its antiderivative is
:
where is the natural logarithm.
The signed angle measure (along the shortest arc) between two half-tangents and is the integral of the constant function ,
:
\int\limits_{0}^{h_2 \ominus h_1} \!\!\! \frac{2\,dh}{1 + h^2}
&= 2\arctan(h_2 \ominus h_1) = 2\arctan\left(\frac{h_2 - h_1}{1 + h_1h_2}\right) \\[6mu]
&\equiv \theta_2 - \theta_1 \pmod{2\pi}.
\end{align}
The circular distance between two points on the circle is thus the (unsigned)
:
d(h_1, h_2) = 2\arctan|h_2 \ominus h_1|.
\end{align}
Cayley transform
The Cayley transform is the half-tangent analog of the exponential function {{nobr|:Originally Cayley described the reciprocal transform, {{pb}}{{bi|left=.5|1=}}{{pb}} as a function of a square matrix.{{pb}}However, the name Cayley transform or Cayley map is now commonly applied to either of these functions. For example, is denoted by {{cite journal |last=Selig |first=Jon M. |year=2010 |title=Exponential and Cayley maps for Dual Quaternions |journal=Advances in Applied Clifford Algebras |volume=20 |pages=923-936 |url=https://core.ac.uk/download/pdf/227103861.pdf |doi=10.1007/s00006-010-0229-5}}}}
:
When is a real-valued circular half-tangent, the transform is a quarter-turn rotation. The transform of is a unit-magnitude complex number. The transform cyclically permutes
:
&{\phantom-0} &&\to && 1 &&\to && {\phantom-\infty} &&\to && {-1} &&\to && {\phantom{-}0}, \\[5mu]
&{\phantom-h} &&\to && 1 \oplus h &&\to && {-1/h}\ \ &&\to && {\phantom{-}h \ominus 1} &&\to && {\phantom{-}h}, \\[5mu]
&{-h} &&\to && 1 \ominus h\ \ &&\to && {\phantom-1/h} &&\to && {-(1 \oplus h)}\ \ &&\to && {-h},\\[5mu]
&{\phantom-hi}\ \ &&\to && z &&\to && {\phantom-i/h} &&\to && {-1/z} &&\to && {\phantom{-}hi},\\[5mu]
&{-hi} &&\to\quad && 1/z &&\to\ \ && {-i/h}\ &&\to\ \ && {-z} &&\to\ \ && {-hi}.
\end{alignat}
The transform fixes the imaginary unit:
The reciprocal transform applied to half-tangents takes the complement,
:
This is an involution, , exchanging
:
0 \ &\leftrightarrow \ 1,
& \infty \ &\leftrightarrow \ {-1},
& i\ &\leftrightarrow \ {-i},
\\[5mu]
h \ &\leftrightarrow \ 1 \ominus h,
&{-h} \ &\leftrightarrow \ 1 \oplus h,
& {1/h} \ &\leftrightarrow \ h \ominus 1,
& {-1/h} \ &\leftrightarrow \ {-(1 \oplus h)},
\\[5mu]
hi \ &\leftrightarrow \ 1/z,
& {-hi} \ &\leftrightarrow \ z,
& 1/hi \ &\leftrightarrow \ {-1/z},
& {-1/hi} \ &\leftrightarrow \ {-z},
\end{align}
with fixed points and
The inverse transform (analogous to the natural logarithm) and its reciprocal are
:
E^{-1}(h) &= \frac{h - 1}{1 + h} &&= \ \ \ \, h \ominus 1 &&= -\frac1{E(h)} &&= E(-1/h), \\[8mu]
\frac1{E^{-1}(h)} &= \frac{1 + h}{h - 1} &&= - (1 \oplus h) &&= \,{-E(h)} &&= E(1/h) = E^{-1}(-h).
\end{alignat}
permutes while its reciprocal reflects
Analogous to the exponential function, the transform converts tangent addition of the arguments to multiplication. Unlike the exponential function, also converts multiplication of the arguments to tangent addition.
:
E(h_1 \boxplus h_2) &= E(h_1)\,E(h_2), &
E(h_1 \boxminus h_2) &= E(h_1) \big/ E(h_2), \\[6mu]
E\bigl((h_1 \oplus h_2)i\bigr) &= E(h_1i)\,E(h_2i), &
E\bigl((h_1 \ominus h_2)i\bigr) &= E(h_1i) \big/ E(h_2i), \\[6mu]
E(h_1h_2) &= E(h_1) \boxplus E(h_2), &
E(h_1/h_2) &= E(h_1) \boxminus E(h_2), \\[6mu]
E(h_1h_2)i &= E(h_1)i \oplus E(h_2)i, &
E(h_1/h_2)i &= E(h_1)i \ominus E(h_2)i.
\end{align}
These identities above also hold if is replaced by
Similar identities can be written in terms of the tangent addition operations, without explicitly naming {{nobr|:}}
= Quarter-turned and complement product identities =
From a half-tangent the complement half-tangent and quarter-turned half-tangent appear often.
Fincke "30. The secant of an arc is equal to the sum of the tangent of the arc and the tangent of the half-complement of the arc.
{{pb}}31. The secant of an arc is equal to the sum of the tangent of the same arc and the tangent of half the complement of the arc." https://archive.org/details/den-kbd-pil-130018099382-001/page/n102/mode/1up
{{pb}}
http://17centurymaths.com/contents/euler/diffcal/part2ch6.pdf
The two are supplements,
:
The product (or quotient) of quarter-turned or complement half-tangents can be rewritten as a quarter-turned or complement hyperbolic tangent sum (or difference):These are straight-forward to prove in terms of the Cayley transform but here is a direct algebraic proof using the definitions of and {{nobr|:}}{{pb}}{{bi|left=.5|1=
&(1 \ominus h_1)(1 \ominus h_2) \\[3mu]
&\quad = \frac{(1 - h_1)(1 - h_2)}{(1 + h_1)(1 + h_2)}
= \frac{1 - h_1 - h_2 + h_1h_2}{1 + h_1 + h_2 + h_1h_2} \\[3mu]
&\quad = \frac{1 - \dfrac{h_1 + h_2}{1 + h_1h_2}}{1 + \dfrac{h_1 + h_2}{1 + h_1h_2}}
= \frac{1 - (h_1 \boxplus h_2)}{1 + (h_1 \boxplus h_2)} \\[3mu]
&\quad = 1 \ominus (h_1 \boxplus h_2)
\end{align}}}{{pb}} And likewise for the other variants.
:
(1 \oplus h_1)(1 \oplus h_2) &= 1 \oplus (h_1 \boxplus h_2), \\[8mu]
(1 \ominus h_1)(1 \ominus h_2) &= 1 \ominus (h_1 \boxplus h_2), \\[5mu]
(1 \oplus h_1)(1 \ominus h_2) &= \frac{1 \oplus h_1}{1 \oplus h_2} = 1 \oplus (h_1 \boxminus h_2) \\[5mu]
&= \frac{1 \ominus h_2}{1 \ominus h_1} = 1 \ominus (h_2 \boxminus h_1).
\end{align}
The above identity can be applied recursively to a quotient of arbitrary factors,
:
&(1 \oplus p_1)(1 \oplus p_2) \cdots (1 \oplus p_k)(1 \ominus q_1)(1 \ominus q_2) \cdots (1 \ominus q_m)
\\[5mu]
&\quad =\frac{(1 \oplus p_1)(1 \oplus p_2) \cdots (1 \oplus p_k)}
{(1 \oplus q_1)(1 \oplus q_2) \cdots (1 \oplus q_m)}
= 1 \oplus (p_1 \boxplus \cdots \boxplus p_k \boxminus q_1 \boxminus \cdots \boxminus q_m),
\\[5mu]
&\quad = \frac{(1 \ominus q_1)(1 \ominus q_2) \cdots (1 \ominus q_m)}
{(1 \ominus p_1)(1 \ominus p_2) \cdots (1 \ominus p_k)}
= 1 \ominus (q_1 \boxplus \cdots \boxplus q_m \boxminus p_1 \boxminus \cdots \boxminus p_k).
\end{align}
The complement of a product or quotient can be factored as the hyperbolic tangent sum or difference of complements:These are corollaries of the previous identity.{{pb}}Taking and we have:{{pb}}
{{bi|left=.5|1=
& 1 \ominus h_1h_2 \\[3mu]
&\quad = 1 \ominus (1 \ominus h_1')(1 \ominus h_2') \\[3mu]
&\quad = 1 \ominus \bigl(1 \ominus (h_1' \boxplus h_2')\bigr)
= h_1' \boxplus h_2' \\[3mu]
&\quad = (1 \ominus h_1) \boxplus (1 \ominus h_2)
\end{align}}}{{pb}}
And likewise for the quotient identity.{{pb}}
A closely related identity about cosines appears in {{harvp|Hardy|2015}}. See § Circular functions › Product identities.
:
1 \ominus h_1h_2 &= (1 \ominus h_1) \boxplus (1 \ominus h_2), \\[8mu]
1 \ominus \frac{h_1}{h_2} &= (1 \ominus h_1) \boxminus (1 \ominus h_2), \\[8mu]
\end{align}
This identity can also be applied recursively to a quotient of arbitrary factors,
:
1 \ominus \frac{p_1p_2\cdots p_k}{q_1q_2\cdots q_m}
&= (1 \ominus p_1) \boxplus (1 \ominus p_2) \boxplus \cdots \boxplus (1 \ominus p_k) \\
&\qquad \boxminus (1 \ominus q_1) \boxminus (1 \ominus q_2) \boxminus \cdots \boxminus (1 \ominus q_m).
\end{align}
In particular, if the half-tangents are repeated this turns the complement of a power into an iterated hyperbolic sum of complements,
:
1 \ominus h^k &= (1 \ominus h)^{\boxplus k}.
\end{align}
Circular functions
File:Stereographic circular functions.png
The circular functions (a.k.a. trigonometric functions) of angle measure can alternately be written as rational functions of the half-tangent {{harvp|Hardy|2015}} calls these functions the stereographic sine, stereographic cosine, and stereographic tangent, which we will denote and respectively,{{harvp|Wildberger|2017}} uses the symbols {{mvar|S}}, {{mvar|C}}, and {{mvar|T}}. {{harvp|Hardy|2015}} uses the symbols {{math|ss}} for "stereographic sine", {{math|cs}} for "stereographic cosine", and {{math|ts}} for "stereographic tangent". these are:{{harvp|Casey|1888|loc=[https://archive.org/details/treatiseonplanet00caseuoft/page/42 §§49, 52, p. 42–43]}}
:
\sin\theta &= \frac{2h}{1+h^2} =: S(h), & \csc\theta &= \frac{1+h^2}{2h} = \frac1{S(h)}, \\[10mu]
\cos\theta &= \frac{1-h^2}{1+h^2} =: C(h), & \sec\theta &= \frac{1+h^2}{1-h^2} = \frac1{C(h)}, \\[10mu]
\tan\theta &= \frac{2h}{1-h^2} =: T(h), & \cot\theta &= \frac{1-h^2}{2h} = \frac1{T(h)}.
\end{align}
The tangent and sine of a half-tangent are also respectively its circular and hyperbolic tangent squares,
:
\tan \theta = T(h) &= h \oplus h = \, h^{\oplus2}, \\[6mu]
\sin \theta = S(h) &= h \boxplus h = \, h^{\boxplus2}, \\[6mu]
\cos \theta = C(h) &= \frac{S(h)}{T(h)} = \frac{h^{\boxplus 2}}{h^{\oplus 2}} = 1 \ominus h^2.
\end{align}
The unit complex number is also a rational function of
:
z = \exp\theta i &= \frac{1-h^2}{1+h^2} + \frac{2h}{1+h^2}i = \frac{1 + hi}{1 - hi} = 1 \oplus hi \\[8mu]
&= C(h) + S(h)i = E(hi).
\end{align}
In terms of the sine and cosine are related to the Joukowsky transform:
{{cite journal |last=Sánchez-Reyes |first=Javier |year=2019 |title=The Joukowsky Map Reveals the Cubic Equation |journal=American Mathematical Monthly |volume=126 |number=1 |pages=33-40 |doi=10.1080/00029890.2019.1528814 |doi-access=free }}
:
S(h) &= \ \frac{z - z^{-1}}{2i} &&= i\frac{1 - z^2}{2z} &&= \frac{i}{T(z)} &&= \frac{i}{z^{\oplus2}}, \\[8mu]
C(h) &= \ \frac{z + z^{-1}}2 &&= \frac{1 + z^2}{2z} &&= \frac{1}{S(z)} &&= \frac{1}{z^{\boxplus2}}, \\[8mu]
T(h) &= \frac1i\, \frac{z - z^{-1}}{z + z^{-1}} &&= i\frac{1 - z^2}{1 + z^2} &&= i C(z) &&= i(1 \ominus z^2).
\end{alignat}
Less common circular functions chord ({{math|crd}}), versine ({{math|vers}}), vercosine ({{math|vercos}}), and exsecant ({{math|exsec}}) can also be written in terms of the half-tangent:
:
\operatorname{crd}\theta &:= 2\sin\tfrac12\theta = \frac{2h}{\sqrt{1+h^2}} = 2S\bigl(\sqrt[\oplus]{h}\bigr), \quad |\theta| < \pi \\[10mu]
\operatorname{vers}\theta &:= 1 - \cos\theta = \frac{2h^2}{1+h^2} = h\,S(h), \\[10mu]
\operatorname{vercos}\theta &:= 1 + \cos\theta = \frac{2}{1+h^2} = \frac{S(h)}h = \frac{d\theta}{dh}, \\[10mu]
\operatorname{exsec}\theta &:= \sec\theta - 1 = \frac{2h^2}{1-h^2} = h\,T(h).
\end{align}
= Derivatives and antiderivatives =
Just as for the circular functions,
:
\frac{d}{d\theta}S(h) &= C(h), & \int S(h)\,d\theta &= -C(h) + c, \\[10mu]
\frac{d}{d\theta}C(h) &= -S(h), & \int C(h)\,d\theta &= S(h) + c, \\[10mu]
\frac{d}{d\theta}T(h) &= \frac1{C(h)^2}, & \int T(h)\,d\theta &= -\log|C(h)| + c, \\[10mu]
\frac{d}{d\theta}\frac1{S(h)} &= -\frac{C(h)}{S(h)^2}, & \int \frac{1}{S(h)}d\theta &= \log|h| + c, \\[10mu]
\frac{d}{d\theta}\frac1{C(h)} &= \frac{S(h)}{C(h)^2}, & \int \frac{1}{C(h)}d\theta &= \log|1 \oplus h| + c, \\[10mu]
\frac{d}{d\theta}\frac1{T(h)} &= -\frac{1}{S(h)^2}, & \int \frac{1}{T(h)}d\theta &= \log |S(h)| + c.
\end{align}
where {{nobr|;}} see {{slink|#Differential geometry}} above.
= Identities =
For each trigonometric identity relating the circular functions of angle measure, an analogous identity relates these stereographic circular functions of half-tangent.
== Pythagorean identity ==
The Pythagorean identity does not depend on the parametrization of the circle,
:
C(h)^2 + S(h)^2 &= 1.
\end{align}
== Reflections ==
As with sine and cosine, the function is odd while is even so taking the inverse half-tangent {{nobr|()}} flips the sign of but not , while taking the supplementary half-tangent {{nobr|()}} flips the sign of but not , and taking the complementary half-tangent {{nobr|()}} swaps and
:
S(-h) &= -S(h), &
S(1/h) &= \phantom{-}S(h), &
S(1 \ominus h) &= C(h), \\[6mu]
C(-h) &= \phantom{-}C(h), &
C(1/h) &= -C(h), &
C(1 \ominus h) &= S(h), \\[6mu]
T(-h) &= -T(h), &
T(1/h) &= -T(h), &
T(1 \ominus h) &= 1 / T(h).
\end{align}
A half-tangent's complement is the supplement of the quarter-turned half-tangent, and also its negatively quarter-turned supplement,
:
1 \ominus h = \frac1{1 \oplus h} = \frac1h \ominus 1.
== Quarter and half turns ==
Shifts via the tangent sum operation correspond to shifts of sine and cosine via angle addition,
:
S(h \oplus 1) &= \phantom-C(h), &
S(h \oplus \infty) &= -S(h), &
S(h \ominus 1) &= -C(h),
\\[6mu]
C(h \oplus 1) &= -S(h), &
C(h \oplus \infty) &= -C(h), &
C(h \ominus 1) &= \phantom-S(h),
\\[6mu]
T(h \oplus 1) &= -1 / T(h), &
T(h \oplus \infty) &= \phantom-T(h), &
T(h \ominus 1) &= -1 / T(h).
\end{align}
The tangent and secant are also related to the complement and quarter-turned half-tangents,{{cite journal |last=Wu |first=Rex H. |title=Proof Without Words: Revisiting Two Trigonometric Figures and Two Identities from Bressieu and Fincke |journal=Mathematics Magazine |volume=92 |number=4 |year=2019 |pages=302-304 |doi=10.1080/0025570X.2019.1603732 }}
:
T(h) &= \ h^{\oplus2} &&= \tfrac12\bigl((1 \oplus h) - (1 \ominus h)\bigr)
= \frac{1}{T(1 \ominus h)} = \frac{-1}{T(1 \oplus h)}, \\[6mu]
\frac1{C(h)} &= \frac{h^{\oplus2}}{h^{\boxplus2}} &&= \tfrac12\bigl((1 \oplus h) + (1 \ominus h)\bigr)
= \frac{1}{S(1 \ominus h)} = \frac{1}{S(1 \oplus h)}.
\end{alignat}
Combining both sides above,
:
1 \oplus h &= \frac1{C(h)} + T(h), \\[6mu]
1 \ominus h &= \frac1{C(h)} - T(h).
\end{align}
== Tangent sum identities ==
Analogous to trigonometric angle sum identities,{{cite book |last=Chauvenet |first=William |title=A Treatise on Plane and Spherical Trigonometry |publisher=Lippincott |chapter=§4.59 |chapter-url=https://archive.org/details/treatiseonplanes00chauiala/page/32/}}
{{pb}}{{harvp|Carnot|1803}} p. 153.
{{pb}}https://archive.org/details/traitdetrigonom03serrgoog/page/n52/
:
h_1 \oplus h_2
&= \frac{h_1 + h_2}{1 - h_1h_2}
= \frac{S(h_1) + S(h_2)}{C(h_1) + C(h_2)}
= \frac{C(h_2) - C(h_1)}{S(h_1) - S(h_2)} , \\[10mu]
h_1 \ominus h_2
&= \frac{h_1 - h_2}{1 + h_1h_2}
= \frac{S(h_1) - S(h_2)}{C(h_1) + C(h_2)}
= \frac{C(h_2) - C(h_1)}{S(h_1) + S(h_2)} , \\[10mu]
(h_1 \ominus h_2)(h_1 \oplus h_2)
&= \frac{C(h_2) - C(h_1)}{C(h_1) + C(h_2)}
= 1 \ominus \frac{C(h_1)}{C(h_2)}
= h_1^2\boxminus h_2^2, \\[10mu]
\frac{h_1 \ominus h_2}{h_1 \oplus h_2}
&= \frac{S(h_1) - S(h_2)}{S(h_1) + S(h_2)}
= 1 \ominus \frac{S(h_2)}{S(h_1)}
= \frac{T(h_1 \boxminus h_2)}{T(h_1 \boxplus h_2)}, \\[10mu]
\end{align}
Taking sines or cosines of tangent sums:
:
S(h_1 \oplus h_2)
&= \ \ \, \frac{2(h_1 + h_2)(1 - h_1h_2)}{(1 + h_1^2)(1 + h_2^2)} \quad
= S(h_1)C(h_2) + C(h_1)S(h_2), \\[10mu]
C(h_1 \oplus h_2)
&= \frac{(1 - h_1h_2)^2 - (h_1 + h_2)^2}{(1 + h_1^2)(1 + h_2^2)}
= C(h_1)C(h_2) - S(h_1)S(h_2), \\[10mu]
\frac{S(h_1 \ominus h_2)}{S(h_1 \oplus h_2)}
&= \frac{T(h_1) - T(h_2)}{T(h_1) + T(h_2)}
= 1 \ominus \frac{T(h_2)}{T(h_1)}
= \frac{h_1 \boxminus h_2}{h_1 \boxplus h_2}, \\[10mu]
\frac{C(h_1 \ominus h_2)}{C(h_1 \oplus h_2)}
&= \frac{1 - T(h_1)T(h_2)}{1 + T(h_1)T(h_2)}
= 1 \oplus T(h_1)T(h_2)
\end{align}
== Product identities ==
By rearranging the tangent sum identities above, we obtain identities for the product of sines and cosines:
See Prosthaphaeresis.{{pb}}
Werner, John (1907) [written 15th century]. De triangulis sphaericis libri quatuor, ed. Axel Anthon Björnbo, Abhandlungen zur Geschichte der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen Begründet von Moritz Cantor
24, part I, Leipzig: Teubner. [written early 16th century] https://archive.org/details/ioannisvernerid00rhgoog/
{{pb}}
Nicolai Ursus (1588) Fundamentum astronomicum https://archive.org/details/den-kbd-all-130017588436-001
:
S(h_1)S(h_2) &= \tfrac12\bigl(C(h_1 \ominus h_2) - C(h_1 \oplus h_2)\bigr), \\[5mu]
C(h_1)C(h_2) &= \tfrac12\bigl(C(h_1 \ominus h_2) + C(h_1 \oplus h_2)\bigr), \\[5mu]
S(h_1)C(h_2) &= \tfrac12\bigl(S(h_1 \ominus h_2) + S(h_1 \oplus h_2)\bigr), \\[5mu]
C(h_1)S(h_2) &= \tfrac12\bigl(S(h_2 \ominus h_1) + S(h_1 \oplus h_2)\bigr). \\[5mu]
\end{align}
Combining these, the products or quotients of tangents are
:
T(h_1)T(h_2) &= \frac
{C(h_1 \ominus h_2) - C(h_1 \oplus h_2)}
{C(h_1 \ominus h_2) + C(h_1 \oplus h_2)}, \\[8mu]
\frac{T(h_1)}{T(h_2)} &= \frac
{S(h_1 \ominus h_2) + S(h_1 \oplus h_2)}
{S(h_2 \ominus h_1) + S(h_1 \oplus h_2)}.
\end{align}
The sines and tangents of a product or quotient are
:
S(h_1 h_2) &= (h_1h_2)^{\boxplus2} = \frac{2h_1h_2}{1 + h_1^2h_2^2}, &
S(h_1/h_2) &= (h_1/h_2)^{\boxplus2} = \frac{2h_1h_2}{h_1^2 + h_2^2}, \\[10mu]
T(h_1 h_2) &= (h_1h_2)^{\oplus2} = \frac{2h_1h_2}{1 - h_1^2h_2^2}, &
T(h_1/h_2) &= (h_1/h_2)^{\oplus2} = \frac{2h_1h_2}{h_2^2 - h_1^2}, \\[10mu]
\frac{S(h_1 h_2)}{S(h_1/h_2)} &= h_1^2 \boxplus h_2^2, &
\frac{T(h_1 h_2)}{T(h_1/h_2)} &= h_2^2 \boxminus h_1^2, \\[10mu]
\frac{T(h_1 h_2)}{S(h_1/h_2)} &= h_1^2 \oplus h_2^2, &
\frac{S(h_1 h_2)}{T(h_1/h_2)} &= h_2^2 \ominus h_1^2,
\end{align}
The cosecants and cotangents of products therefore satisfy
:
\frac1{S(h_1 h_2)} &= \frac{1}{S(h_1)\,S(h_2)} + \frac{1}{T(h_1)\,T(h_2)}, \\[10mu]
\frac1{S(h_1/h_2)} &= \frac{1}{S(h_1)\,S(h_2)} - \frac{1}{T(h_1)\,T(h_2)} = \frac1{S(h_2/h_1)}, \\[10mu]
\frac1{T(h_1 h_2)} &= \frac{1}{T(h_1)\,S(h_2)} + \frac{1}{S(h_1)\,T(h_2)}, \\[10mu]
\frac1{T(h_1/h_2)} &= \frac{1}{T(h_1)\,S(h_2)} - \frac{1}{S(h_1)\,T(h_2)} = \frac{-1}{T(h_2/h_1)}, \\[10mu]
\end{align}
and the products of cosecants and cotangents satisfy
:
\frac{1}{S(h_1)\,S(h_2)} &= \frac12\left(\frac1{S(h_1 h_2)} + \frac1{S(h_1/h_2)}\right), \\[6mu]
\frac{1}{T(h_1)\,T(h_2)} &= \frac12\left(\frac1{S(h_1 h_2)} - \frac1{S(h_1/h_2)}\right), \\[8mu]
\frac{1}{T(h_1)\,S(h_2)} &= \frac12\left(\frac1{T(h_1 h_2)} + \frac1{T(h_1/h_2)}\right)
= \frac12\left(\frac1{T(h_1 h_2)} - \frac1{T(h_2/h_1)}\right). \\[8mu]
\end{align}
The products or quotients of cosines can be written as shifted hyperbolic tangent sums or differences of squares. See {{slink|#Quarter-turned and complement product identities}} above.
:
C(h_1)\,C(h_2)
&= \frac{S(h_1/h_2) - S(h_1 h_2)}{S(h_1/h_2) + S(h_1 h_2)}
= \left(1 \ominus h_1^2\right)\left(1 \ominus h_2^2\right)
= 1 \ominus \bigl(h_1^2 \boxplus h_2^2 \bigr),
\\[8mu]
\frac{C(h_1)}{C(h_2)}
&= \frac{T(h_1/h_2) + T(h_1 h_2)}{T(h_1/h_2) - T(h_1 h_2)}
= 1 \ominus \bigl(h_1^2 \boxminus h_2^2 \bigr)
= 1 \oplus \bigl(h_2^2 \boxminus h_1^2 \bigr).
\end{align}
These identities extend naturally to the product or quotient of arbitrary cosines,
:
&\frac{C(p_1)\,C(p_2)\cdots C(p_k)}{C(q_1)\,C(q_2)\cdots C(q_m)} \\[5mu]
&\qquad= \left(1 \ominus p_1^2\right)\left(1 \ominus p_2^2\right)\cdots \left(1 \ominus p_k^2\right)
\left(1 \oplus q_1^2\right)\left(1 \oplus q_2^2\right)\cdots \left(1 \oplus q_m^2\right) \\[5mu]
&\qquad= 1 \ominus \bigl(p_1^2 \boxplus p_2^2 \boxplus \cdots \boxplus p_k^2 \boxminus q_1 \boxminus q_2 \boxminus \cdots \boxminus q_m \bigr).
\end{align}
The cosine of a product or quotient can be separated as a hyperbolic tangent sum or difference of cosines{{harvp|Hardy|2015|page=47}}.
{{pb}}
The angle of parallelism of a hyperbolic angle measure, with half-tangent and cosine{{pb}}
{{bi|left=.5 |1=
\tan\tfrac12\mathit{\Pi}(a) &= \exp(-a), \\[3mu]
\cos\mathit{\Pi}(a) &= 1 \ominus \exp(-2a) = -C(\exp a),
\end{align}}}
{{pb}}
provides an alternative formulation of these identities. For instance:
{{pb}}
{{bi|left=.5 |1=
\tan\tfrac12\mathit{\Pi}(a - b) &= \tan\tfrac12\mathit{\Pi}(a) \big/ \tan\tfrac12\mathit{\Pi}(b), \\[3mu]
\cos\mathit{\Pi}(a - b) &= \cos\mathit{\Pi}(a) \boxminus \cos\mathit{\Pi}(b).
\end{align}}}
{{pb}}
{{cite book |last=Lobachevsky |first=Nikolai |author-link=Nikolai Lobachevsky |year=1891 |orig-year=1840 |title=Geometrical Researches on The Theory of Parallels |translator-last=Halsted |translator-first=George Bruce |publisher=University of Texas |pages=41–43 |url=https://archive.org/details/geometricalresea00loba/page/42/ }} Translated from {{cite book |last=Lobachevsky |first=Nikolai |year=1840 |display-authors=0 |title=Geometrische Untersuchungen zur Theorie der Parallellinien |language=de |place=Berlin |publisher=G. Fincke |pages=53–56 |url=https://archive.org/details/geometrischeunt00loba/page/55}}
:
C(h_1 h_2) &= C(h_1) \boxplus C(h_2), \\[6mu]
C(h_1/h_2) &= C(h_1) \boxminus C(h_2), \\[6mu]
C{\left(\frac{p_1 p_2 \cdots p_k}{q_1 q_2 \cdots q_m}\right)}
&= C(p_1) \boxplus C(p_2) \boxplus \cdots \boxplus C(p_k) \\
&\qquad \boxminus C(q_1) \boxminus C(q_2) \boxminus \cdots \boxminus C(q_m).
\end{align}
= Inverse functions =
The inverse stereographic circular functions (analogous to arcsine, arccosine, arctangent) taking a sine , cosine , or tangent to a half-tangent are
:
C^{-1}(x) &= \sqrt{1\ominus x\vphantom l}
= \frac{\sqrt{1 - x^2}}{1 + x} = \frac{1 - x}{\sqrt{1 - x^2}}, \\[8mu]
S^{-1}(y) &= \sqrt[\boxplus]{y\vphantom t} = \frac{y}{1 + \sqrt{1 - y^2}} = \frac{1 - \sqrt{1 - y^2}}{y}
= 1 \ominus \sqrt{1\ominus y\vphantom l}, \\
T^{-1}(t) &= \sqrt[\oplus]{t \vphantom y} = \frac{t}{1 + \sqrt{1 + t^2}} = \frac{1 - \sqrt{1 + t^2}}{t}.
\end{align}
The other branch of each square root also returns a half-tangent satisfying or {{nobr|:}}
:
0 \ominus C^{-1}(x) &= -C^{-1}(x) &&= \frac{-\sqrt{1 - x^2}}{1 + x}
= \frac{1 - x}{-\sqrt{1 - x^2}} = -\sqrt{1\ominus x\vphantom l}, \\[8mu]
\infty \ominus S^{-1}(y) &= \ \frac1{S^{-1}(y)} &&= \frac{y}{1 - \sqrt{1 - y^2}}
= \frac{1 + \sqrt{1 - y^2}}{y} = 1 \oplus \sqrt{1\ominus y\vphantom l}, \\[8mu]
\infty \oplus T^{-1}(t) &= \ \frac{-1}{T^{-1}(t)} &&= \frac{t}{1 - \sqrt{1 + t^2}}
= \frac{1 + \sqrt{1 + t^2}}{t}.
\end{alignat}
The inverse of a modified Cayley transform analogous to the natural logarithm taking a unit complex number to a half-tangent times the imaginary unit, is
:
E^{-1}(z) = \frac{z - 1}{z + 1} = z \ominus 1 = hi.
= Multiple-angle identities =
The half-tangent analogs of circular functions of multiple angles are the functions
:
C_k(h) &:= C(h^{\oplus k}) = \cos k\theta, \\[6mu]
S_k(h) &:= S(h^{\oplus k}) = \sin k\theta, \\[6mu]
E_k(h) &:= E(h^{\boxplus k}), \\[6mu]
E_k(hi) \!&\phantom{:}= E(h^{\oplus k}i) = C_k(h) + iS_k(h) = \exp k\theta i.
\end{align}
The first few are:Wildberger
:
C_0(h) &= 1, &
S_0(h) &= 0,
\\[6mu]
C_1(h) &= \dfrac{1 - h^2}{1 + h^2}, &
S_1(h) &= \dfrac{2h}{1 + h^2},
\\[10mu]
C_2(h) &= \dfrac{1 - 6h^2 + h^4}{(1 + h^2)^2}, &
S_2(h) &= \dfrac{4h - 4h^3}{(1 + h^2)^2},
\\[10mu]
C_3(h) &= \dfrac{1 - 15h^2 + 15h^4 - h^6}{(1 + h^2)^3}, &
S_3(h) &= \dfrac{6h - 20h^3 + 6h^5}{(1 + h^2)^3},
\\[10mu]
& \ldots & & \ldots
\end{align}
or in general,
:
E_k(hi) &= \left(\frac{1 + hi}{1 - hi}\right)^{\!k} = \frac{(1 + hi)^{2k}}{(1 + h^2)^k}, \\[10mu]
E_{-k}(hi) &= \left(\frac{1 - hi}{1 + hi}\right)^{\!k} = \frac{(1 - hi)^{2k}}{(1 + h^2)^k}, \\[10mu]
C_k(h) &= \frac{E_k(hi) + E_{-k}(hi)}{2} = \dfrac{1}{(1 + h^2)^k}\sum_{m} \binom{2k}{2m}\bigl({-h^2}\bigr)^m, \\[10mu]
S_k(h) &= \frac{E_k(hi) - E_{-k}(hi)}{2i} = \dfrac{h}{(1 + h^2)^k}\sum_{m} \binom{2k}{2m + 1}\bigl({-h^2}\bigr)^m.
\end{align}
= Half-angle identities =
File:Half-angle trigonometric functions in terms of the half-tangent.png
The stereographic circular functions of the "quarter-tangent" (see {{slink||Square root}} above) are:{{harvp|Paeth|1991}} [https://archive.org/details/graphicsgemsii0000unse/page/382/ p. 382]{{cite journal |last=Wales |first=William |year=1781 |title=XXX. Hints relating to the Use which may be made of the Tables of natural and logarithmic Sines, Tangents, &c. in the numerical Resolution of adfected Equations
|journal=Philosophical Transactions of the Royal Society of London |volume=71 |doi=10.1098/rstl.1781.0054 |jstor=106540 |url=https://archive.org/details/Philosophicaltr71Roya/page/454/ |pages=454-478 }}
:
C_{1/2}(h) := C\bigl(\sqrt[\oplus]h\bigr) &= \frac{1}{\sqrt{1 + h^2}}, \\[6mu]
S_{1/2}(h) := S\bigl(\sqrt[\oplus]h\bigr) &= \frac{h}{\sqrt{1 + h^2}} = h\,C_{1/2}(h), \\[6mu]
E_{1/2}(hi) := E\bigl(i\sqrt[\oplus]h\bigr)
&= \frac{1 + hi}{\sqrt{1 + h^2}}
= \sqrt{\frac{1 + hi\vphantom{)}}{1 - hi}}
= \sqrt{E(hi)}.
\end{align}
The sine of a half-angle is noteworthy as the chord length in a unit-diameter circle, see {{slink|#Chordal distance}} above.
Taking the supplement (reciprocal) of the argument exchanges half-angle sine with half-angle cosine:
:
The stereographic circular functions can be described in terms of half-angle functions:
:
S(h) &= 2C_{1/2}(h)S_{1/2}(h), \\[6mu]
C(h) &= 1 - 2S_{1/2}(h)^2 = 2C_{1/2}(h)^2 - 1.
\end{aligned}
Sines and cosines of half-angle sums and differences are found in spherical trigonometry, and can be translated to half-tangent form using the identities
:
C_{1/2}(h_1 \oplus h_2)
&= \frac{1 - h_1h_2}{\sqrt{1 + h_1^2}\sqrt{1 + h_2^2}}, &
S_{1/2}(h_1 \oplus h_2)
&= \frac{h_1 + h_2}{\sqrt{1 + h_1^2}\sqrt{1 + h_2^2}}, \\[6mu]
\frac{S_{1/2}(h_1 \oplus h_2)}{C_{1/2}(h_1 \oplus h_2)}
&= \frac{h_1 + h_2}{1 - h_1h_2} = h_1 \oplus h_2, &
\frac{S_{1/2}(h_1 \ominus h_2)}{C_{1/2}(h_1 \ominus h_2)}
&= \frac{h_1 - h_2}{1 + h_1h_2} = h_1 \ominus h_2, \\[10mu]
\frac{S_{1/2}(h_1 \oplus h_2)}{C_{1/2}(h_1 \ominus h_2)}
&= \frac{h_1 + h_2}{1 + h_1h_2} = h_1 \boxplus h_2, &
\frac{S_{1/2}(h_1 \ominus h_2)}{C_{1/2}(h_1 \oplus h_2)}
&= \frac{h_1 - h_2}{1 - h_1h_2} = h_1 \boxminus h_2, \\[10mu]
\frac{C_{1/2}(h_1 \ominus h_2)}{C_{1/2}(h_1 \oplus h_2)}
&= \frac{1 + h_1h_2}{1 - h_1h_2} = h_1h_2 \oplus 1, &
\frac{S_{1/2}(h_1 \ominus h_2)}{S_{1/2}(h_1 \oplus h_2)}
&= \frac{h_1 - h_2}{h_1 + h_2} = \frac{h_1}{h_2} \ominus 1, \\[10mu]
E_{1/2}\bigl((h_1 \oplus h_2)i\bigr)
&= \frac{1 + h_1i + h_2i - h_1h_2}{\sqrt{1 + h_1^2}\sqrt{1 + h_2^2}}.
\end{align}
For three arguments (also found in spherical trigonometry),
:
C_{1/2}\left(h_1 \oplus h_2 \oplus h_3\right)
&= \frac
{1 - h_1h_2 - h_1h_3 - h_2h_3}
{\sqrt{1 + h_1^2}\sqrt{1 + h_2^2}\sqrt{1 + h_3^2} }\,,\\[10mu]
S_{1/2}\left(h_1 \oplus h_2 \oplus h_3\right)
&= \frac
{h_1 + h_2 + h_3 - h_1h_2h_3}
{\sqrt{1 + h_1^2}\sqrt{1 + h_2^2}\sqrt{1 + h_3^2} }\,,\\[10mu]
E_{1/2}\bigl((h_1 \oplus h_2 \oplus h_3)i\bigr)
&= C_{1/2}\left(h_1 \oplus h_2 \oplus h_3\right) + S_{1/2}\left(h_1 \oplus h_2 \oplus h_3\right)i.
\end{align}
For any number of arguments,{{cite journal |last=Hardy |first=Michael |year=2016 |title=On Tangents and Secants of Infinite Sums |journal=American Mathematical Monthly |volume=123 |number=7 |pages=701-703 |doi=10.4169/amer.math.monthly.123.7.701 }}
:
E_{1/2}\bigl((h_1 \oplus \cdots \oplus h_k)i\bigr)
&= \,\prod_m E_{1/2}(h_mi) \
= \,\prod_m \frac{1 + h_mi}{\sqrt{1 + h_m^2 }} \
&&= \frac
{\displaystyle \sum_m e_m{\left(h_1i,..., h_ki\right)}}
{\displaystyle \prod_m \sqrt{1 + h_m^2} }\,,\\[10mu]
C_{1/2}\left(h_1 \oplus \cdots \oplus h_k\right)
&= \frac{\displaystyle \prod_m E_{1/2}(h_mi) + \prod_m E_{1/2}(-h_mi)}{2}
&&= \frac
{\displaystyle \sum_{m \text{ even}} e_m{\left(h_1i,..., h_ki\right)}}
{\displaystyle \prod_m \sqrt{1 + h_m^2} }\,, \\[10mu]
S_{1/2}\left(h_1 \oplus \cdots \oplus h_k\right)
&= \frac{\displaystyle \prod_m E_{1/2}(h_mi) - \prod_m E_{1/2}(-h_mi) }{2i}
&&= \frac
{\displaystyle -i \sum_{m \text{ odd}} e_m{\left(h_1i,..., h_ki\right)}}
{\displaystyle \prod_m \sqrt{1 + h_m^2} }\,.
\end{alignat}
where and is the {{mvar|m}}th elementary symmetric polynomial. The denominators above come from a product of cosines:
:
\prod_m C_{1/2}(h_m) = \frac1{\displaystyle \prod_m \sqrt{1 + h_m^2}} = \frac1 \sqrt{\displaystyle \,\sum_m e_m{\left(h_1^2,..., h_k^2\right)\vphantom{\Big|} }} \,.
Ptolemy's theorem that the sum of products of lengths of opposite sides of a convex cyclic quadrilateral is equal to the product of the lengths of the diagonals can be rewritten as an algebraic relationship of four arbitrary half-tangents representing the vertices:{{cite journal |last=Apostol |first=Tom M. |year=1967 |title=Ptolemy's Inequality and the Chordal Metric |journal=Mathematics Magazine |volume=40 |number=5 |pages=233–235 |jstor=2688275}}
:
0 = &\phantom{{}+{}} S_{1/2}(h_1\ominus h_2)S_{1/2}(h_4\ominus h_3) \\
&{} + S_{1/2}(h_1\ominus h_3)S_{1/2}(h_2\ominus h_4) \\
&{} +S_{1/2}(h_1\ominus h_4)S_{1/2}(h_3\ominus h_2).
\end{align}
This can be proven by expanding it in terms of the previous identities:
:
0 =
\frac{(h_1 - h_2)(h_4 - h_3) + (h_1 - h_3)(h_2 - h_4) + (h_1 - h_4)(h_3 - h_2)}
{\sqrt{1 + h_1^2}\sqrt{1 + h_2^2}\sqrt{1 + h_3^2}\sqrt{1 + h_4^2}}.
After expanding the products of binomials in the numerator, every term cancels.
= Stereographic polynomials =
Analogous to Laurent polynomials of unit-magnitude complex numbers or trigonometric polynomials of angle measures, stereographic polynomials can be defined for half-tangents. These are rational functions of the form where is a polynomial of degree at most .
If the polynomial in the numerator is with coefficients then the stereographic polynomial can be written in terms of powers of half-angle sines and cosines as:
:
s(h) = \sum_{k=0}^{2n}\frac{p_k h^k}{\bigl(1 + h^2\bigr)\vphantom{)}^n}
= \sum_{k=0}^{2n} p_kS_{1/2}(h)^{k}C_{1/2}(h)^{2n-k},
because
As a complex function, a stereographic polynomial has all of its poles at (and none at ), compared to a Laurent polynomial with poles at or an ordinary polynomial with poles only at
Just as a trigonometric polynomial can be written in terms of a basis of cosines and sines or complex exponentials of multiple angles,
:
or under the change of variables the resulting Laurent polynomial can be broken into even and odd parts or written in monomial basis,
:
under the change of variables this is the stereographic polynomial and can be written in either of the bases,
:
In all three of the corresponding polynomials above, the coefficients and are the same.
Hyperbolic functions
The hyperbolic functions of argument can alternately be written as rational functions of the hyperbolic half-tangent As functions of these turn out to be equivalent to circular functions we had above, but with tangent and sine exchanged. We will continue to use the letters and to refer to the circular functions of a half-tangent.
:
\sinh \psi = \tan \theta &= \frac{2h}{1-h^2} = T(h),
& \operatorname{csch}\psi = \cot \theta &= \frac{1-h^2}{2h} = \frac1{T(h)},
\\[10mu]
\cosh \psi = \sec \theta &= \frac{1+h^2}{1-h^2} = \frac1{C(h)},
& \operatorname{sech}\psi = \cos \theta &= \frac{1-h^2}{1+h^2} = C(h),
\\[10mu]
\tanh \psi = \sin \theta &= \frac{2h}{1+h^2} = S(h),
& \coth\psi = \csc \theta &= \frac{1+h^2}{2h} = \frac1{S(h)}.
\end{align}
The circular angle measure is the gudermannian of the hyperbolic angle measure with common half-tangent which can be defined by
:
The hyperbolic tangent and sine of a half-tangent are also respectively its hyperbolic and circular tangent squares,
:
\tanh \psi = \,S(h)\ &= h \boxplus h = \, h^{\boxplus2}, \\[6mu]
\sinh \psi = \,T(h)\ &= h \oplus h = \, h^{\oplus2}, \\[6mu]
\cosh \psi = \frac1{C(h)} &= \frac{T(h)}{S(h)} = \frac{h^{\oplus 2}}{h^{\boxplus 2}} = 1 \oplus h^2.
\end{align}
There are two common geometric interpretations of a hyperbolic angle measure The first is as the logarithm of a multiplicative scaling by which can be combined using complex numbers with a circular rotation to scale and rotate complex numbers or vectors in the Euclidean plane by multiplication.
Under this interpretation, hyperbolic functions are the even and odd parts of the exponential function of a real (or perhaps complex) argument,
:
\sinh \psi = \frac{e^\psi - e^{-\psi}}{2}, \quad
\cosh \psi = \frac{e^\psi + e^{-\psi}}{2}, \quad
\tanh \psi = \frac{e^\psi - e^{-\psi}}{e^\psi + e^{-\psi}}.
\end{align}
The second is as the logarithm of a hyperbolic rotation (Lorentz boost) in pseudo-Euclidean space using split-complex numbers of the form with an imaginary unit analogous to a circular rotation in Euclidean space expressed via the complex number with imaginary unit
Under this interpretation, hyperbolic functions are the even and odd parts of the exponential function of a split-complex valued argument, either pure-imaginary or general,{{cite journal |last=Fjelstad |first=Paul |year=1986 |title=Extending special relativity via the perplex numbers |journal=American Journal of Physics |volume=54 |issue=5 |page=416–422 |doi=10.1119/1.14605 }}
:
\sinh \psi = \frac{e^{\psi j} - e^{-\psi j}}{2j}, \quad
\cosh \psi = \frac{e^{\psi j} + e^{-\psi j}}{2}, \quad
\tanh \psi = j \frac{e^{\psi j} - e^{-\psi j}}{e^{\psi j} + e^{-\psi j}}.
\end{align}
Compare to the circular functions:
:
\sin \theta = \frac{e^{\theta i} - e^{-\theta i}}{2i}, \quad
\cos \theta = \frac{e^{\theta i} + e^{-\theta i}}{2}, \quad
\tan \theta = -i \frac{e^{\theta i} - e^{-\theta i}}{e^{\theta i} + e^{-\theta i}}.
\end{align}
When using the hyperbolic half-tangent instead of the hyperbolic angle measure it is possible to represent points on both branches of the unit hyperbola instead of only the right branch.
Möbius transformations
For any four half-tangents their cross-ratio is the quantity,
:
When one of the half-tangents is the half-turn this remains well defined, reducing to e.g.
:
This quantity is the same between the corresponding points on the complex unit circle,
:
This gives another way to express the definition of the map as a cross ratio:
:
Any transformation of the projectively extended real line which preserve the cross-ratio,
:
is called a linear fractional transformation or Möbius transformation, is a homography, and is an element of the projective special linear group . It is a function of the form
:
and can be written as the matrix
:
where and Any uniform scaling of represents the same transformation. Composition of Möbius transformations corresponds to matrix multiplication.
The general transformation can have zero, one, or two (real) fixed points, which can be found by solving
:
&h = \frac{ah + b}{ch + d} \implies ch^2 - (a-d)h - b = 0 \\[5mu]
&\implies h = \frac{a-d \pm \sqrt{(a-d)^2 + 4bc}}{2c}
\end{align}
When the real line is considered as the set of ideal points of the hyperbolic plane (cf. Poincaré half-plane model), the group of Möbius transformations with real coefficients which preserve orientation {{nobr|()}} is isomorphic to the group of isometries of a the hyperbolic plane. The orientation-reversing transformations {{nobr|()}} correspond to isometries of paired hyperbolic planes which exchange their points (in the half-plane model, exchanging upper and lower half-planes; in the hyperboloid model exchanging two sheets of the hyperboloid).
= Types of transformations =
The only homographies of half-tangents preserving distance on the circle and orientation are rotations using the tangent addition operation with one fixed argument. Rotations have no fixed points, except for the zero rotation which fixes every point. Three basic rotations are the the half-turn and the quarter turns and
:
a \oplus h &\quad \text{has matrix} \quad \begin{pmatrix} 1 & a \\ -a & 1 \end{pmatrix}, \\[8mu]
0 \oplus h &\quad \text{has matrix} \quad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, &
\infty \oplus h &\quad \text{has matrix} \quad \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \\[8mu]
1 \oplus h &\quad \text{has matrix} \quad \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix},
& \ominus1 \oplus h &\quad \text{has matrix} \quad \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}.
\end{align}
Also preserving distance but reversing orientation are the reflections using the tangent subtraction operation with one fixed argument. Reflections fix a pair of antipodal points and and exchange The most basic reflections are with and with The reflections and exchange the real and imaginary axes when transplanted to the complex unit circle.
:
a \ominus h &\quad \text{has matrix} \quad \begin{pmatrix} -1 & a \\ a & 1 \end{pmatrix}, \\[8mu]
0 \ominus h &\quad \text{has matrix} \quad \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, &
\infty \ominus h &\quad \text{has matrix} \quad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \\[8mu]
1 \ominus h &\quad \text{has matrix} \quad \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix},
& \ominus1 \ominus h &\quad \text{has matrix} \quad \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.
\end{align}
Another kind of transformation is the origin-centered dilation with fixed points and More generally a dilation can be centered at some other point, so that with antipodal fixed points and When these transformations can be interpreted as the apparent movement of the "celestial circle" in a {{math|2 + 1}}-dimensional spacetime when the observer changes relativistic velocity, a lorentz boost.
{{cite journal |last=Ebner |first=D. W. |year=1973 |title=A Purely Geometrical Introduction of Spinors in Special Relativity by Means of Conformal Mappings on the Celestial Sphere |journal=Annalen Der Physik |volume=485 |issue=3-4 |page=206–210 |doi=10.1002/andp.19734850303 }}
{{pb}}
{{cite journal |last=Stuart |first=Robin G. |year=2009 |title=Applications of complex analysis to precession, nutation and aberration |journal=Monthly Notices of the Royal Astronomical Society |volume=400 |number=3 |pages=1366-1372 |doi=10.1111/j.1365-2966.2009.15529.x |doi-access=free }}
:
&sh \quad \text{has matrix} \quad \begin{pmatrix} s & 0 \\ 0 & 1 \end{pmatrix}, \\[12mu]
&s(h \ominus a) \oplus a \quad \text{has matrix ...} \\[8mu]
&\qquad
\begin{pmatrix} 1 & a \\ -a & 1 \end{pmatrix}
\begin{pmatrix} s & 0 \\ 0 & 1 \end{pmatrix}
\begin{pmatrix} 1 & -a \\ a & 1 \end{pmatrix}
= \begin{pmatrix} s + a^2 & (1-s)a \\ (1-s)a & 1 + sa^2 \end{pmatrix}.
\end{align}
The only homographies of hyperbolic half-tangents preserving hyperbolic distance are hyperbolic rotations using the hyperbolic tangent addition operation and reflections using the hyperbolic subtraction operation with one fixed argument. Any hyperbolic rotation fixes and {{nobr|,}} while a hyperbolic reflection exchanges them.
:
a \boxplus h \quad \text{has matrix} \quad \begin{pmatrix} 1 & a \\ a & 1 \end{pmatrix}, \qquad
a \boxminus h \quad \text{has matrix} \quad \begin{pmatrix} -1 & a \\ -a & 1 \end{pmatrix}.
When is treated as a circular half-tangent, is a dilation by around the equatorial point or by around
:
a \boxplus h
&= (1 \oplus a)(h \oplus 1) \ominus 1 \\[5mu]
&= (1 \ominus a)(h \ominus 1) \oplus 1.
\end{align}
This leads to the identities from {{slink|#Quarter-turned and complement product identities}} above.
Planar trigonometry
File:Angles and sides of a general triangle.png
Planar trigonometry (the metrical relations between angles and sides of a triangle in the Euclidean plane) is conventionally written down in terms of side lengths symbolized by and angle measures (in degrees or radians) symbolized by following the convention established by Euler, who built on the ancient tradition of labeling the vertices When set up this way, several conventional trigonometry identities involve the half-tangents alongside the trigonometric sines, cosines, and tangents of the angles.
Occasionally, however, the half-tangent of each angle is instead treated as the basic quantity and directly given a symbol, whereupon the transcendental trigonometric functions of angle measure become rational functions of half-tangent, and all of the traditional trigonometric identities can be written as strictly rational relationships. This is the approach we will adopt here:
Let and be the lengths of the sides of a planar triangle. Let the respective (interior) angles opposite each side have half-tangents and Then and are their supplements, the respective exterior-angle half-tangents.
= Relations among angles =
In any triangle, the interior angle measures sum to a half turn or equivalently the exterior angle measures sum to a full turn. In terms of half-tangents this relation can be written as any of,
:
\alpha \oplus \beta \oplus \gamma &= \infty, & \alpha \oplus \beta &= \frac1\gamma,\\[6mu]
\frac1\alpha \oplus \frac1\beta \oplus \frac1\gamma &= 0, & \frac1\alpha \oplus \frac1\beta &= - \frac1\gamma.
\end{align}
Fully expanded in terms of ordinary addition and multiplication,
:
\alpha\beta + \alpha\gamma + \beta\gamma &= 1, \\[6mu]
\frac1\alpha + \frac1\beta + \frac1\gamma &= \frac1\alpha \frac1\beta \frac1\gamma.
\end{align}
Expressed in terms of angle measure, these identities are sometimes called the "triple tangent identity" or "triple cotangent identity".
= Relations between sides and angles =
Angle can be related to the side lengths by the equivalent equations below, the first of which is a simple modification of the law of cotangents and the last of which is the law of cosines written in terms of half-tangents, where is the stereographic cosine.
{{cite journal |last=Burgess |first=A. G. |year=1915 |title=Proof of some Triangle Formulae |journal=Edinburgh Mathematical Notes |volume=18 |pages=202–206 |doi=10.1017/S1757748900001444 }}
{{pb}}
https://archive.org/details/planesphericaltr00wheeuoft/page/76/
{{pb}}
{{cite journal |last= Kung |first=Sidney H. |page=342 |title=The Law of Cosines |department=Proof without Words |journal=Mathematics Magazine |volume=63 |number=5 |year=1990 |jstor=2690911 |doi=10.2307/2690911 }}
{{pb}}
{{cite journal |last=Hoehn |first=Larry |year=2013 |title=Derivation of the law of cosines via the incircle |journal=Forum Geometricorum |volume=13 |pages=133–134 |url=https://forumgeom.fau.edu/FG2013volume13/FG201313index.html }}
{{pb}}
{{cite journal |last=Edwards |first=Miles Dillon |year=2014 |title=A Possibly New Proof of the Law of Cosines |journal= American Mathematical Monthly |volume=121 |number=2 |page=149 |doi=10.4169/amer.math.monthly.121.02.149 }}
{{pb}}
Half-tangent of an angle in terms of the sides in eq. 56 of https://apps.dtic.mil/sti/pdfs/ADA212241.pdf
:
\gamma^2
&= \frac{c^2 - (b - a)^2}{(b + a)^2 - c^2}
= \frac{(-a + b + c)(a - b + c)}{(a + b - c)(a + b + c)},\\[10mu]
C(\gamma) &= \frac {a - c}{b} \boxplus \frac{b}{a + c}
= \frac {b - c}{a} \boxplus \frac{a}{b + c} \\[10mu]
c^2
&=\frac{\gamma^2(b + a)^2 + (b - a)^2}{\gamma^2 + 1}
= a^2 + b^2 - 2ab\,C(\gamma).
\end{align}
and likewise for and (The squares on the left hand side arise because two different triangle shapes can be found with the given side lengths, with angular half-tangents (or angle measures) of opposite signs and indicating anticlockwise and clockwise turns, respectively. These two triangles are congruent under reflection.)
The half-tangent expressions of Mollweide's formulas (first published by Isaac Newton in 1707) are corollaries,
{{cite journal |last=Paradiso |first=L.J. |year=1927 |title=A Check Formula for the First Case of Oblique Triangles |department=Questions and Discussions |doi=10.1080/00029890.1927.11986713 |journal=American Mathematical Monthly |volume=34 |issue=6 }}{{pb}}
{{cite journal |last=DeKleine |first=H. Arthur |year=1988 |title=Mollweide's Equation |department=Proof Without Words |journal=Mathematics Magazine |volume=61 |number=5 |pages=281-281 |doi=10.1080/0025570X.1988.11977390 }}{{pb}}
{{cite journal |last1=Bradley |first1=H. C. |last2=Yamanouti |first2=T. |last3=Lovitt |first3=W. V. |last4=Archibald |first4=R. C. |year=1921 |title=III. Geometric Proofs of the Law of Tangents |department=Questions and Discussions |journal=American Mathematical Monthly |volume=28 |number=11/12 |pages=440-443 |doi=10.2307/2972473 |doi-access=free }}{{pb}}
{{cite journal |last=Wu |first=Rex H |title=The Mollweide Equations from the Law of Sines |department=Proof without Words |journal=Mathematics Magazine |volume=93 |number=5 |year=2020 |pages=386-386 |doi=10.1080/0025570X.2020.1817707 }}
{{pb}}
{{cite journal |last=Laudano |first=Francesco |year=2022 |title=106.40 The law of tangents and the formulae of Mollweide and Newton |journal=Mathematical Gazette |volume=106 |number=567 |pages=516-517 |doi=10.1017/mag.2022.132}}
:
\alpha\beta &= \,\, \frac{a + b - c}{a + b + c} \ \, = \frac{a + b}{c} \ominus 1, &
\alpha\beta \oplus 1 =
\frac{1 + \alpha\beta}{1 - \alpha\beta}
&= \frac{a + b}{c}, \\[10mu]
\frac\alpha\beta &= \frac{a - b + c}{-a + b + c} = \frac{a - b}{c} \oplus 1, &
\frac\alpha\beta \ominus 1 =
\,\,\frac{\alpha - \beta}{\alpha + \beta}\,
&= \frac{a - b}{c}.
\end{align}
and likewise for other pairs of angles. Taking the quotient of these to eliminate results in the law of tangents,
{{cite journal |last=Hinckley |first=A. |year=1940 |title=1460. Formulae for the Solution of Triangles |journal=Mathematical Gazette |volume=24 |number=260 |pages=204–206 |doi=10.2307/3605713 |jstor=3605713 }}
{{pb}}
{{cite journal |last=Wu |first=Rex H. |year=2001 |title=The Law of Tangents |department=Proofs Without Words |journal=Mathematics Magazine |volume=74 |number=2 |page=161 |doi=10.1080/0025570X.2001.11953056 }}
:
\frac{\alpha \ominus \beta}{\alpha \oplus \beta}
= \frac{a - b}{a + b}.
The left side of the law of tangents can be written in terms of the stereographic sine (see § Circular functions › Tangent sum identities above),
:
1 \ominus \frac{S(\beta)}{S(\alpha)}
= 1 \ominus \frac{b}{a}, \qquad
\frac{S(\alpha)}{S(\beta)} = \frac ab.
This is the law of sines,
:
where the common ratio is the diameter of the circumcircle of the triangle.
Unlike in spherical and hyperbolic geometry, in Euclidean geometry the dual of the law of cosines degenerates: in the infinitessimal limit a squared side of a spherical triangle vanishes and So the result is merely a rearrangement of the angle relationship or demonstrating the tangent-sum identity for stereographic cosine,
:
Compare that to {{slink||Relations between dihedral and central angles}} below about the spherical versions.
But we can salvage the rational expression for one side in terms of the three angles by dividing by the spherical excess. In the infinitesimal limit the ratio of squared side to excess of a spherical triangle degenerates to the ratio of squared side to twice the area of a planar triangle, so for notational consistency we will use the symbol to mean twice the area of a planar triangle (see {{slink||Triangle area}} below):
:
\frac{c^2}{\varepsilon}
&= \frac
{({-\alpha\beta} + \alpha\gamma + \beta\gamma + 1)
(\alpha + \beta + \gamma - \alpha\beta\gamma)}
{(\alpha\beta - \alpha\gamma + \beta\gamma + 1)
(\alpha\beta + \alpha\gamma - \beta\gamma + 1)}
= \frac
{S(\gamma)}{S(\alpha)S(\beta)}.
\end{align}
:
\frac{ab}{\varepsilon} &= \frac
{\alpha + \beta + \gamma - \alpha\beta\gamma}
{-\alpha\beta + \alpha\gamma + \beta\gamma + 1}
= \frac{1}{S(\gamma)}, \\[10mu]
\frac ab &= \,\,\frac
{\alpha\beta + \alpha\gamma - \beta\gamma + 1}
{\alpha\beta - \alpha\gamma + \beta\gamma + 1} \ \,
= \bigl((\alpha \ominus \beta)\gamma\bigr) \oplus 1, &
\frac ab \ominus 1
&= (\alpha \ominus \beta)\gamma.
\end{align}
and likewise for other pairs of sides. In the latter equation, the areas cancel and the ratio of stereographic side lengths does not vanish in the planar limit, and we are left with a proper dual to one of Mollweide's formulas – one of Napier's analogies transplanted directly to the plane. However, it is more commonly written as
:
\frac ab = \frac
{\alpha\beta + \alpha\gamma - \beta\gamma + 1}
{\alpha\beta - \alpha\gamma + \beta\gamma + 1}
= \frac
{S(\alpha)}
{S(\beta)},
\end{align}
an expression of the law of sines.
= Triangle area =
Let be twice the (signed) area of the triangle; for a triangle with base and altitude , {{nobr|1=Alternately might be thought of as the whole area of the triangle, taking the unit for area to be a right triangle with unit-length sides. This definition of is chosen to make the parallel to the excess in spherical and hyperbolic trigonometry clearer.}}
In terms of two sides and the included angle, the area is
:
In terms of the three sides, Heron's formula is
Heron of Alexandria (1903) [c. 60 AD]. Metrica. In Schöne, Hermann (ed.). Opera, Vol. III (in Ancient Greek and German). Teubner. [https://archive.org/details/heronisalexandri03hero/page/18/ prop. 8, pp. 18–25]. [https://web.calstatela.edu/faculty/hmendel/Ancient%20Mathematics/HeroAlexandrinus/Metrica.i.1-9/Metrica.I.1-9.html#prop8 English translation by Henry Mendell].
{{pb}}{{cite journal |last=Dunham |first=William |year=1985 |title=An 'Ancient/Modern' Proof of Heron's Formula |journal=Mathematics Teacher |volume=78 |number=4 |pages=258-259 |doi=10.5951/MT.78.4.0258 |jstor=27964484 }}
{{pb}}{{cite web |last1=Conway |first1=John |author1-link=John Conway |last2=Doyle |first2=Peter |year=1997–2001 |title=Heron's formula |department=Private email conversation published by Doyle |url=https://math.dartmouth.edu/%7Edoyle/docs/heron/heron.txt }}
{{pb}}{{cite journal |last=Nelsen |first=Roger B. |year=2001 |title=Heron's Formula via Proofs without Words |department=Classroom Capsules |journal=College Mathematics Journal |volume=32 |number=4 |pages=290-292 |jstor=2687566 |doi=10.1080/07468342.2001.11921892 |url=https://www.maa.org/sites/default/files/0746834212944.di020798.02p0691h.pdf}}
{{pb}}{{cite journal |last=Klain |first=Daniel A. |year=2004 |title=An Intuitive Derivation of Heron's Formula |journal=American Mathematical Monthly |volume=111 |number=8 |pages=709-712 |jstor=4145045 |url=https://faculty.uml.edu/dklain/Klain-Heron.pdf |doi=10.1080/00029890.2004.11920133 }}
{{pb}}{{cite journal |last=Dunham |first=William |year=2011 |title=Newton's Proof of Heron's Formula |journal=Math Horizons |volume=19 |number=1 |pages=5–8 |doi=10.4169/mathhorizons.19.1.5 }}
:
As corollaries,
:
\varepsilon\gamma = \tfrac12(-a + b + c)(a - b + c), \quad
\frac\varepsilon\gamma = \tfrac12(a + b - c)(a + b + c),
and likewise for and Furthermore,{{cite journal |last=Cheney |first=William Fitch, Jr. |year=1929 |title=Heronian Triangles |journal=American Mathematical Monthly |volume=36 |issue=1 |pages=22–28 |doi=10.1080/00029890.1929.11986902 |url=http://math.fau.edu/yiu/PSRM2015/yiu/New%20Folder%20(4)/Heron%20Triangles/Cheney.pdf}}
:
\frac\varepsilon{\alpha\beta\gamma} = \tfrac12(a + b + c)^2.
Triangles where and are all rational numbers are called Heronian triangles; in such triangles, the half-tangents and are also rational numbers.
= Circumcircle, incircle, and excircles =
The diameter of the triangle's circumscribed circle (circumcircle) is{{cite journal |last=van Luijk |first=Ronald |title=The diameter of the circumcircle of a Heron triangle |journal=Elemente der Mathematik |volume=63 |number=3 |year=2008 |pages=118-121 |doi=10.4171/EM/96 |doi-access=free }}
:
D^2 &= \frac{4a^2b^2c^2}{(-a + b + c)(a - b + c)(a + b - c)(a + b + c)}, \\[8mu]
D &= \frac{abc}{\varepsilon}.
\end{align}
As a corollary, if the triangle is scaled so that the diameter of the circumcircle is then twice the area is the product of the sines.{{cite journal |last1=Kocik |first1=Jerzy |last2=Solecki |first2=Andrzej |date=2009 |title=Disentangling a triangle |journal=American Mathematical Monthly |volume=116 |number=3 |pages=228-237 |url=http://lagrange.math.siu.edu/Kocik/triangle/monthlyTriangle.pdf}} For a general triangle,
:
The diameter of the triangle's inscribed circle (incircle) is
{{cite journal |last=Lin |first=Grace |year=1999 |title=The Product of the Perimeter of a Triangle and its Inradius is Twice the Area of the Triangle |department=Proof Without Words |journal=Mathematics Magazine |volume=72 |number=4 |page=317 |doi=10.1080/0025570x.1999.11996756 }}
:
d^2 &= \frac{(-a + b + c)(a - b + c)(a + b - c)}{a + b + c}, \\[8mu]
d &= \frac{2\varepsilon}{a + b + c} = \alpha\beta\gamma(a + b + c) = \gamma(a + b - c),
\end{align}
and likewise for and
The diameter of the triangle's escribed circle (excircle) touching side is
:
d_a^2 &= \frac{(a - b + c)(a + b - c)(a + b + c)}{-a + b + c}, \\[8mu]
d_a &= \frac{2\varepsilon}{-a + b + c} = \alpha(a + b + c) = \frac\alpha{\beta\gamma}(-a + b + c) = \frac1\beta(a + b - c),
\end{align}
and likewise for the excircles touching sides and .
As a corollary,
:
\frac{d_a}{\alpha}
&= \ \frac{d_b}{\beta}
&&= \quad \ \frac{d_c}{\gamma}
&&= \frac{d}{\alpha\beta\gamma}
&{}= a + b + c, \\[8mu]
\frac{d_a}{\beta^{-1}}
&= \frac{d_b}{\alpha^{-1}}
&&= \frac{d_c}{\alpha^{-1}\beta^{-1}\gamma}
&&= \ \ \frac{d}{\gamma}
&{}= a + b - c.
\end{alignat}
= Altitudes =
An altitude is the signed distance from the "base" side to the opposite vertex It can be computed by dividing the double area by the base side, among other ways,
:
h_a = \frac\varepsilon a = bS(\gamma) = cS(\beta) = \frac{bc}D,
and likewise for and
Applying the relation between and the three sides,
:
h_a^2 = \frac1{4a^2}(-a + b + c)(a - b + c)(a + b - c)(a + b + c).
The sum of the reciprocal altitudes is the reciprocal inradius (the inradius is half the diameter of the incircle),
:
= Right triangles =
The triangle is called a right triangle when one angle is a right angle. The side is called the hypotenuse and the other two sides are called legs.
Twice the area of the triangle, is the product of the legs,
:
The other two angles are complements, and can be computed in terms of the sides asPuissant (1819) https://archive.org/details/traitdegodsieou02puisgoog/page/n79
:
\alpha = \frac{a}{c + b} = \frac{c - b}{a},\quad
\beta = \frac{b}{a + c} = \frac{c - a}{b}.
For the right angle, and while for the other two angles sines and cosines are the side ratios,
:
S(\alpha) = C(\beta) = \frac ac,\quad
C(\alpha) = S(\beta) = \frac bc.
The Pythagorean identity is obtained from the law of cosines,
:
When all three sides are integers, the triangle is called a Pythagorean triangle. For such a triangle, the half-tangents and are rational numbers. Conversely, whenever and or is rational the triangle can be uniformly scaled into a Pythagorean triangle.
Spherical trigonometry
Spherical trigonometry (the metrical relations between dihedral angles and central angles of a spherical triangle) can also be described in terms of half-tangents instead of angle measures. Let and be the half-tangents of the central angles subtending sides of a spherical triangle (the "sides"). Let the (interior) dihedral angles at the vertices opposite each side have respective half-tangents and (the "interior angles"). Then and are their supplements, the respective exterior-dihedral-angle half-tangents (the "exterior angles").{{harvp|Huang|Lalín|Mila|2021}} call the half-tangents of sides and angles rational sides and rational angles, respectively.
=== Relation between dihedral angles and spherical excess ===
In the Euclidean plane, the three interior angles of a triangle always compose to a half turn, but on a sphere the composition of the three interior dihedral angles of a triangle always exceeds a half turn, by an angular quantity called the triangle's spherical excess. For a sphere of unit radius, the measure of a triangle's spherical excess (also called solid angle) is equal to the spherical surface area enclosed by the triangle (this identity is Girard's theorem).{{harvp|Todhunter|Leathem|1901}} [https://archive.org/details/sphericaltrigono00todh/page/97 §7.127 Girard's Theorem, pp. 97–98]
Here, let be the half-tangent of the triangle's spherical excess.
:
\alpha \oplus \beta \oplus \gamma = \infty \oplus \varepsilon.
The three exterior angles of a spherical triangle and the excess sum to a full turn,
:
\frac1\alpha \oplus \frac1\beta \oplus \frac1\gamma \oplus \varepsilon = 0.
Rearranging the above, the excess can be written in terms of angles as
:
\varepsilon
= \alpha \oplus \beta \oplus \gamma \ominus \infty
= \frac{-1}{\alpha \oplus \beta \oplus \gamma}
= - {\left(\frac1\alpha \oplus \frac1\beta \oplus \frac1\gamma\right)}.
= Relations between dihedral and central angles =
The spherical law of cosines for angles relates one dihedral angle ("angle") to the three central angles ("sides"). In terms of half-tangents,
:
where is the stereographic cosine and is the stereographic sine. When expanded as a rational equation then simplified this is
:
\gamma^2 &= \frac
{c^2(1 + ab)^2 - (b - a)^2}
{(b + a)^2 - c^2(1 - ab)^2}
= \frac
{({-a} + b + c + abc)(a - b + c + abc)}
{(a + b - c + abc)(a + b + c - abc)}, \\[10mu]
C(\gamma) &= \frac {a \ominus c}{b} \boxplus \frac{b}{a \oplus c}
= \frac {b \ominus c}{a} \boxplus \frac{a}{b \oplus c}, \\[10mu]
c^2 &= \frac
{\gamma^2(b + a)^2 + (b - a)^2}
{\gamma^2(1 - ab)^2 + (1 + ab)^2}
= \frac{a^2 \boxplus b^2 - S(ab)C(\gamma)}{1 + S(ab)C(\gamma)},
\end{align}
and likewise for and In the small-triangle limit with , this reduces to the planar law of cosines.
As corollaries,{{harvp|Chisholm|1895}} [https://books.google.com/books?id=VZUUAQAAIAAJ&pg=PA26 p. 26]
:
\alpha\beta &= \,\, \frac{a + b - c + abc}{a + b + c - abc} \ \,
= \frac{a \oplus b}{c} \ominus 1, &
\alpha\beta \oplus 1
&= \frac{a \oplus b}c, \\[10mu]
\frac\alpha\beta &= \frac{a - b + c + abc}{-a + b + c + abc}
= \frac{a \ominus b}{c} \oplus 1, &
\frac\alpha\beta \ominus 1
&= \frac{a \ominus b}c.
\end{align}
and likewise for other pairs of angles. The two identities above on the right are the half-tangent expressions for two of Napier's analogies (the spherical analog of Mollweide's formulas for a planar triangle). Taking their quotient to eliminate results in the spherical law of tangents,
:
\frac{\alpha \ominus \beta}{\alpha \oplus \beta}
= \frac{a \ominus b}{a \oplus b}.
The two sides of the law of tangents can be written in terms of sines,
:
This simplifies to the spherical law of sines,
:
The spherical law of cosines for sides relates one side to the three angles. In terms of half-tangents,
:
When expanded as a rational equation then simplified this is
:
c^2 &= \frac
{\gamma^2(\beta + \alpha)^2 - (1 - \alpha\beta)^2}
{(1 + \alpha\beta)^2 - \gamma^2(\beta - \alpha)^2}
= \frac
{({-\alpha\beta} + \alpha\gamma + \beta\gamma + 1)
(\alpha\beta + \alpha\gamma + \beta\gamma - 1)}
{(\alpha\beta - \alpha\gamma + \beta\gamma + 1)
(\alpha\beta + \alpha\gamma - \beta\gamma + 1)}, \\[10mu]
\gamma^2 &= \frac
{c^2(1 + \alpha\beta)^2 + (1 - \alpha\beta)^2}
{c^2(\beta - \alpha)^2 + (\beta + \alpha)^2}
= \frac{1 - S(\alpha\beta)C(c)}{\alpha^2 \boxplus \beta^2 + S(\alpha\beta)C(c)},
\end{align}
and likewise for and
As corollaries,{{sfn|Study|1896|p=[https://archive.org/details/cu31924062544352/page/384/ 384]}}
:
ab &= \frac
{\alpha\beta + \alpha\gamma + \beta\gamma - 1}
{-\alpha\beta + \alpha\gamma + \beta\gamma + 1}
= \bigl((\alpha \oplus \beta)\gamma\bigr) \ominus 1, &
ab \oplus 1
&= (\alpha \oplus \beta)\gamma, \\[10mu]
\frac ab &= \,\,\frac
{\alpha\beta + \alpha\gamma - \beta\gamma + 1}
{\alpha\beta - \alpha\gamma + \beta\gamma + 1} \ \,
= \bigl((\alpha \ominus \beta)\gamma\bigr) \oplus 1, &
\frac ab \ominus 1
&= (\alpha \ominus \beta)\gamma.
\end{align}
and likewise for other pairs of sides. The two above on the right are the rest of Napier's analogies.
Combining the two laws of cosines we obtain four more corollaries,
:
c^2 &= \frac
{(a \boxminus b)(a \boxplus b)(\alpha \boxplus \beta)}
{\alpha \boxminus \beta}, &
c\gamma &= \frac
{a \boxminus b}
{\alpha \boxminus \beta}, \\[10mu]
\gamma^2 &= \frac
{a \boxminus b}
{(a \boxplus b)(\alpha \boxplus \beta)(\alpha \boxminus \beta)}, &
\frac c\gamma &= (a \boxplus b)(\alpha \boxplus \beta).
\end{align}
One last set of relations between all six parts:
https://babel.hathitrust.org/cgi/pt?id=mdp.39015085215617&view=1up&seq=191
{{pb}}
{{harvnb|Schubert|1906|page=194}}
:
\frac{a + b + c - abc}{1}\, \frac{\beta\gamma + \alpha\gamma + \alpha\beta - 1}{abc} = 4
\end{align}
This can alternately be rewritten in any of sixteen total ways because:
:
\frac{a + b + c - abc}{1}
&= \ \ \, \frac{-a + b + c - abc}{\beta\gamma}
&&= \ \ \frac{a - b + c + abc}{\alpha\gamma}
&&= \frac{a + b - c + abc}{\alpha\beta}
\\[15mu]
\frac{\beta\gamma + \alpha\gamma + \alpha\beta - 1}{abc}
&= \frac{-\beta\gamma + \alpha\gamma +\alpha\beta + 1}{a}
&&= \frac{\beta\gamma - \alpha\gamma + \alpha\beta + 1}{b}
&&= \frac{\beta\gamma + \alpha\gamma - \alpha\beta + 1}{c}
\end{alignat}
=== Spherical excess ===
As mentioned previously, the half-tangent of spherical excess can be described in terms of angles,
:
\varepsilon
= \alpha \oplus \beta \oplus \gamma \ominus \infty
= \frac{-1}{\alpha \oplus \beta \oplus \gamma}
= \frac
{\alpha\beta + \alpha\gamma + \beta\gamma - 1}
{\alpha + \beta + \gamma - \alpha\beta\gamma}.
It can also be described in terms of two sides and their included angle,Puissant (1819) Traité de Géodésie, second edition, §89, https://archive.org/details/traitdegodsieou02puisgoog/page/n122/mode/2up
:
\varepsilon
= \frac{a b \, S(\gamma)}{1 + a b \, C(\gamma)} = \frac{2ab\gamma}{(1 + ab) + \gamma^2(1 - ab)}.
L'Huilier's formula is somewhat similar to Heron's formula, and describes the quarter-tangent of spherical excess in terms of the quarter-tangents of the three sides. To use the notation of this article,
:
\left(\sqrt[\oplus]\varepsilon\right)^2
=
\sqrt[\oplus]{\ominus a \oplus b \oplus c}\,
\sqrt[\oplus]{a \ominus b \oplus c}\,
\sqrt[\oplus]{a \oplus b \ominus c}\,
\sqrt[\oplus]{a \oplus b \oplus c}.
Another way to write this relationship is Cagnoli's formula,
:
S_{1/2}(\varepsilon)^2
= \frac{
S_{1/2}(\ominus a \oplus b \oplus c)\,
S_{1/2}(a \ominus b \oplus c)\,
S_{1/2}(a \oplus b \ominus c)\,
S_{1/2}(a \oplus b \oplus c)}
{4\,C_{1/2}(a)^2\,C_{1/2}(b)^2\,C_{1/2}(c)^2}.
A third way, expressing the half-tangent of spherical excess in terms of the cosines of the three sides, was known to Euler and Lagrange in the 1770s.{{harvp|Euler|1781}} [https://archive.org/details/actaacademiae02impe/page/44 §23 p. 44]
{{pb}}Lagrange (1798) [https://archive.org/details/oeuvresdelagrang07lagr/page/331 "Solutions de Quelques Problèmes Relatifs aux Triangles Sphériques"] After being expanded in half-tangents and simplified, this is quite similar to the planar Heron's formula, to which it reduces in the small-triangle limit:
:
\varepsilon^2 &= \frac
{1 - C(a)^2 - C(b)^2 - C(c)^2 + C(a)C(b)C(c)}
{\bigl(1 + C(a) + C(b) + C(c)\bigr)\vphantom{)}^2} \\[8mu]
&= \frac
{(-a + b + c + abc)(a - b + c + abc)(a + b - c + abc)(a + b + c - abc)}
{(2 + a^2 + b^2 + c^2 - a^2b^2c^2)^2}.
\end{align}
For clarity in the following, define Then as corollaries,
:
\varepsilon\gamma &= \frac1f(- a + b + c + abc)(a - b + c + abc), \\[10mu]
\frac\varepsilon\gamma &= \frac1f(a + b - c + abc)(a + b + c - abc)
\end{align}
and likewise for and . Furthermore,
:
\frac\varepsilon{\alpha\beta\gamma} = \frac1f(a + b + c - abc)^2.
Spherical triangles where the half-tangents of central angles and the half-tangent of excess are all rational numbers are called Heronian spherical triangles.{{harvp|Schubert|1906}}{{pb}}{{harvp|Huang|Lalín|Mila|2021}} (In such triangles, all three dihedral angle half-tangents and are also rational numbers.)
= Circumscribed and inscribed small circles =
A small circle circumscribed about a spherical triangle (the circumcircle) is the small circle passing through all three vertices of the triangle. When the sphere is embedded in 3-dimensional Euclidean space, this is the intersection of the sphere and the plane passing through the three vertices. Traditional spherical trigonometry books give formulas for the tangent of the central angle radius of this circle, but this is the half-tangent of the central angle diameter of the circle, which we will denote . (The half-tangent of the radius is {{nobr|1=.)}}
For clarity, define
:
f &= 2 + a^2 + b^2 + c^2 - a^2b^2c^2 \\[2mu]
&= (1 + a^2) + (1 + b^2) + (1 + c^2) - (1 + a^2b^2c^2), \\[6mu]
g^2 &= \tfrac14f^2(1 + \varepsilon^2) = (1 + a^2)(1 + b^2)(1 + c^2).
\end{align}
Then the half-tangent of the diameter of the circumcircle isPuissant, p. 114 https://archive.org/details/LIA0235969_TO0324_50768_000001/page/114/
:
D^2 &= \frac
{4a^2b^2c^2(1 + a^2)(1 + b^2)(1 + c^2)}
{(-a + b + c + abc)(a - b + c + abc)(a + b - c + abc)(a + b + c - abc)}, \\[10mu]
D &= \frac{2gabc}{f\varepsilon} = \frac{abc}{S_{1/2}(\varepsilon)}.
\end{align}
A small circle inscribed in a spherical triangle (the incircle) is the small circle tangent to all three sides (great-circle arcs passing through the vertices). Again, traditional spherical trigonometry sources give formulas for the tangent of the incircle's radius, equal to the half-tangent of its diameter which we will call
:
d^2 &= \frac
{(-a + b + c + abc)(a - b + c + abc)(a + b - c + abc)}
{g^2(a + b + c - abc)}, \\[8mu]
d &= \frac
{f\varepsilon}
{g(a + b + c - abc)}
= \frac1g\alpha\beta\gamma(a + b + c - abc)
= \alpha\beta\gamma\,S_{1/2}(a \oplus b \oplus c) \\[4mu]
&\phantom{{}=\frac
{f\varepsilon}
{g(a + b + c - abc)}}
= \frac1g\gamma(a + b - c + abc)
= \gamma\,S_{1/2}(a \oplus b \ominus c),
\end{align}
and likewise for and
The half-tangent of the diameter of the triangle's escribed circle (excircle) touching side ishttps://archive.org/details/sammlungvonaufg01reidgoog/page/n230/
:
d_a^2 &= \frac
{(a + b + c + abc)(a - b + c + abc)(a + b - c + abc)}
{g^2(-a + b + c - abc)}, \\[8mu]
d_a &= \frac
{f\varepsilon}
{g(-a + b + c + abc)}
= \frac1g\alpha(a + b + c - abc)
= \alpha\,S_{1/2}(a \oplus b \oplus c).
\end{align}
and likewise for the excircles touching sides and .
As a corollary,
:
\frac{d_a}{\alpha}
= \frac{d_b}{\beta}
= \frac{d_c}{\gamma}
= \frac{d}{\alpha\beta\gamma}
= \frac1g(a + b + c - abc)
= S_{1/2}(a \oplus b \oplus c).
= Right-angled triangles =
For a spherical triangle with a right angle, the half-tangent of spherical excess (analogous to the area of a planar triangle) is{{harvp|Euler|1781}} [https://archive.org/details/actaacademiae02impe/page/44 §25 pp. 44–45]
:
The spherical Pythagorean identity is the law of cosines for a right-angled triangle, conventionally formulated as In terms of half-tangents it appears more similar planar Pythagorean identity:
:
Given any pair of other data, all of the sides and angles can be determined by the identities,{{cite book |last1=Wentworth |first1=George |last2=Smith |first2=David Eugene |year=1915 |title=Plane and Spherical Trigonometry |publisher=Ginn |pages=193–194 |url=https://books.google.com/books?id=iWRCAAAAIAAJ&pg=PA194 }}
:
C(c) &= C(a)C(b) = \frac1{T(\alpha)T(\beta)}, \quad S(c) = \frac{S(a)}{S(\alpha)}, \\[6mu]
C(\alpha) &= \frac{T(b)}{T(c)}, \quad S(\alpha) = \frac{C(\beta)}{C(b)} = \frac{S(a)}{S(c)}, \\[10mu]
C(a) &= \frac{C(\alpha)}{S(\beta)} = \frac{C(c)}{C(b)}, \quad S(a) = \frac{T(b)}{T(\beta)},
\end{align}
and likewise exchanging
In practical computation, when one or both legs of the triangle is very small, taking cosines can result in loss of significance. It can improve precision to take the complement of each side {{nobr|()}} and then algebraically manipulate to obtain,
:
c^2 &= a^2 \boxplus b^2 = - \frac{C(\alpha \oplus \beta)}{C(\alpha \ominus \beta)}, \quad
(1 \ominus c)^2 = \frac{\alpha \ominus a}{\alpha \oplus a}, \\[6mu]
\alpha^2 &= \frac{S(c \ominus b)}{S(c \oplus b)},\quad
(1 \ominus \alpha)^2 = (\beta \ominus b)(\beta \oplus b) = \frac{c \ominus a}{c \oplus a},
\\[6mu]
a^2
&= (\alpha \oplus \beta \ominus 1)(\alpha \ominus \beta \oplus 1)
= (c \oplus b)(c \ominus b), \quad
(1 \ominus a)^2 = \frac{S(\beta \ominus b)}{S(\beta \oplus b)}.
\\[6mu]
\end{align}
Inversive and Laguerre geometry
By the intersecting secants theorem and intersecting chords theorem from Euclid's Elements, given a point and a circle in the Euclidean plane, for any line through the point and intersecting the circle, the product of the segment length from the point to the two intersections of the line with the circle is a constant. Jakob Steiner called this value the power of the point with respect to the circle, and its study led to the concept of the radical axis of two circles and the radical center of three circles.{{wikicite |ref={{harvid|Steiner|1826}} |reference={{cite journal |ref=none |last1=Steiner |first1=Jakob |authorlink1=Jakob Steiner |year=1826 |title=Einige geometrischen Betrachtungen |trans-title=Some geometric considerations |lang=de |journal=Crelle's Journal |volume=1 |pages=161-184 |url=https://archive.org/details/journalfurdierei1218unse/page/n172 |doi=10.1515/crll.1826.1.161 }} [https://archive.org/details/journalfurdierei1218unse/page/n402/mode/1up Figures 8–26].}} An inversion of the plane with respect to a circle exchanges points in the plane such that the product of their distances to a common center is a given constant. More generally the group of Möbius transformations is generated by such circle inversions.
Edmond Laguerre found a dual concept: given a directed line and a directed circle in the Euclidean plane, for any point on the line, the product of the half-tangents of the angles between the given line and the two tangent lines to the circle passing through the point is a constant, the power of the line with respect to the circle. What Laguerre called a transformation by reciprocal semi-lines exchanges directed lines which intersect along a central axis, the product of whose respective half-tangents with that axis is a given constant.{{cite journal |last=Laguerre |first=Edmond |author-link=Edmond Laguerre |year=1882 |title=Transformations par semi-droites réciproques |lang=fr |trans-title=Transformations by reciprocal semi-lines |journal=Nouvelles annales de mathématiques 3e série |volume=1 |pages=542-556 |url=https://archive.org/details/s3nouvellesannal01pari/page/542/ }}{{cite book |last=Coolidge |first=Julian Lowell |author-link=Julian Coolidge |year=1916 |title=A Treatise on the Circle and the Sphere |publisher=Clarendon |chapter=X. The Oriented Circle |chapter-url=https://archive.org/details/circleandsphere00coolrich/page/351/ |pages=351–407 }}
The spherical analog of the intersecting secants and chords theorems replaces planar distances with stereographic distances (half-tangents of central angles), and was proven by Anders Lexell in 1786.{{cite journal |last=Lexell |first=Anders Johan |author-link=Anders Johan Lexell |year=1786 |title=De proprietatibus circulorum in superficie sphaerica descriptorum |lang=la |trans-title=On the properties of circles described on a spherical surface |journal=Acta Academiae Scientiarum Imperialis Petropolitanae |volume=1786 |number=1 |pages=58–103 |url=https://archive.org/details/actaacademiaesci82impe/page/58/ }}
{{pb}}Also see Cagnoli 1804 https://gdz.sub.uni-goettingen.de/id/PPN575645350?tify=%7B%22pages%22%3A%5B366%5D%2C%22pan%22%3A%7B%22x%22%3A0.628%2C%22y%22%3A0.441%7D%2C%22view%22%3A%22export%22%2C%22zoom%22%3A1.347%7D
Thus, analogously to the Euclidean case, the power of a point on the sphere with respect to a small circle is the product of the stereographic distances from the point to the two intersections of the circle and any great circle through the point which intersects the circle.{{harvp|Todhunter|Leathem|1901}} [https://archive.org/details/sphericaltrigono00todh/page/132/ "IX. Properties of Circles on the Sphere"], pp. 132–147. Also see Leathem's [https://archive.org/details/sphericaltrigono00todh/page/n13/ footnote, p. viii]. An inversion of the sphere with respect to a small circle exchanges points such that the product of their stereographic distances is a given constant. The power of a directed great circle with respect to a directed small circle is the product of of the half-tangents of the angles between the given great circle and the two great-circle tangents to the small circle passing through any point along the line. A transformation by reciprocal directed great circles exchanges directed great circles which intersect along a central axis, the product of whose respective half-tangents with that axis is a given constant.
- {{cite journal |last=Jeffery |first=H.M. |year=1887 |title=On the Converse of Stereographic Projection and on Contangential and Coaxal Spherical Circles |journal=Proceedings of the London Mathematical Society |volume=17 |pages=379–409 |url=https://archive.org/details/proceedings-of-the-london-mathematical-society-vol-17/page/379/ |doi=10.1112/plms/s1-17.1.379 }}
Cross ratio:
- Foote, Robert L., and Xidian Sun. "An Intrinsic Formula for the Cross Ratio in Spherical and Hyperbolic Geometries." The College Mathematics Journal 46, no. 3 (2015): 182-188. https://doi.org/10.4169/college.math.j.46.3.182
- Lu, Deng-Maw, Chi-Feng Chang, and Wen-Miin Hwang. "Cross ratio in sphere geometry and its application to mechanism design." Journal of the Franklin Institute 332, no. 2 (1995): 219-226. https://doi.org/10.1016/0016-0032(95)00042-1
- Coxeter, H. S. M. "Inversive distance." Annali di Matematica Pura ed Applicata 71 (1966): 73-83. https://link.springer.com/content/pdf/10.1007/BF02413734.pdf
Euclidean plane isometries
- {{cite journal |last=
Rodrigues |first=Olinde |year=
1840 |title=Des lois géométriques qui régissent les déplacements d'un système solide dans l'espace,... |trans-title=On the geometrical laws which govern the displacements of a solid system in space,... |journal=Journal de Mathématiques Pures et Appliquées |volume=5 |pages=380-440 |url=https://archive.org/details/s1journaldemat05liou/page/380/
}}
Conic sections
File:Conics from half-tangents.png
Given two fixed points in the Euclidean plane, an ellipse with foci is commonly defined to be a locus of points such that the sum of the distances and is some constant Likewise, one branch of a hyperbola with foci is commonly defined to be a locus of points such that the difference of distances is some other constant {{nobr|;}} the other branch of the hyperbola is the locus of points with difference
If we construct the triangle , then due to Mollweide's formula (see {{slink||Relations between sides and angles}} for the half-tangent expression), this sum or difference of side lengths is a function of the product or quotient of half-tangents of the opposite angles. Thus we can instead characterize an ellipse as the locus of points such that the product of half-tangents of angles and is a constant . Likewise, one branch of a hyperbola is the locus of points such that the quotient is a constant {{nobr|;}} the other branch is the locus of points with quotient Mulcahy 1852 https://books.google.com/books?id=BjY1AAAAcAAJ&pg=PA186{{cite journal |last1=Akopyan |first1=Arseniy |last2=Izmestiev |first2=Ivan |title=The Regge symmetry, confocal conics, and the Schläfli formula |journal=Bulletin of the London Mathematical Society |volume=51 |number=5 |year=2019 |pages=765-775 |url=https://core.ac.uk/download/pdf/227712036.pdf |doi=10.1112/blms.12276}}
Related feature of confocal parabolas: https://archive.org/details/elementaryconic00smituoft/page/110/mode/1up
The situation is analogous for conics on the sphere and hyperbolic plane, except that distances on the Euclidean plane sum using stereographic distances on the sphere sum using and stereographic distances on the hyperbolic plane sum using (See {{slink||Relations between dihedral and central angles}} above.)
On the sphere and the hyperbolic plane, the dual statement is closely related: if are two fixed focal geodesics, then the envelopes of the geodesics forming triangles (trilaterals) with constant product or quotient (where is the stereographic length of the side along geodesic and is the stereographic length of the side along geodesic {{nobr|)}} are confocal dual conics. On the Euclidean plane the metrical duality between points and lines is less exact. One of the duals results in the tangent–asymptotes triangle of a hyperbola: given two intersecting lines in the plane, any hyperbola with those lines as its asymptotes is the envelope of tangent lines such that the triangle formed by lines has constant area (equivalently, is constant, where is the length of the side along geodesic and is the length of the side along geodesic {{nobr|).}} The envelopes of lines forming triangles with constant is a degenerate conic: a pair of parallel lines.
Higher-dimensional stereographic projections
{{main|stereographic projection}}
= From unit quaternions =
Half-tangent function
The half-tangent function is the circular function the tangent of half of the argument.
= Formal definition =
The half-tangent function can be formally defined as the ratio of the power series for and both of which converge throughout the complex plane.
:
\tan \tfrac12 \theta
= \frac{\sin \tfrac12 \theta}{\cos \tfrac12 \theta}
=\frac{\displaystyle
-i \sum_{n\text{ odd}} \frac{(\theta i)^n}{2^nn!}
}{\displaystyle
\phantom{-i}\sum_{n\text{ even}} \frac{(\theta i)^n}{2^nn!}
}
= \frac{\displaystyle
\frac \theta2 - \frac{\theta^3}{2^33!} + \frac{\theta^5}{2^55!} - \frac{\theta^7}{2^77!} + \cdots
}{\displaystyle
1 - \frac{\theta^2}{2^22!} + \frac{\theta^4}{2^44!} - \frac{\theta^6}{2^66!} + \cdots
}.
\end{align}
In terms of the complex exponential function, it can be defined as
:
\tan \tfrac12 \theta
= -i\, \frac{\exp{\theta i} - 1}{\exp{\theta i} + 1}.
\end{align}
Alternately, it can be defined for the interval as the solution to an initial value problem
{{cite arXiv |last=Robinson |first=Paul L. |year=2019 |title=A tangential approach to trigonometry |eprint=1902.03140}}
:
\tan\tfrac12 0 = 0,\quad
\frac{d}{d\theta}\tan\tfrac12 \theta
= \tfrac12{\bigl(1 + \tan^2 \tfrac12 \theta\bigr)},
and then analytically continued throughout the complex plane.
=== Relation to other circular functions ===
For real-valued the half-tangent can be written in terms of other circular functions in a wide variety of ways,
:
h = \tan \tfrac12\theta
&= -i \frac{\exp \theta i - 1}{\exp \theta i + 1}
= \frac{i - i\cos \theta + \sin\theta}{1 + \cos \theta + i\sin\theta} \\[10mu]
&= \frac{\sin \theta}{1 + \cos \theta}
= \frac{1 - \cos \theta}{\sin \theta}
= \frac{\tan\theta}{1 + \sec{\theta}}
= \csc \theta - \cot \theta \\[10mu]
&= \frac{1 - \cos\theta + \sin\theta}{1 + \cos\theta + \sin\theta}
= \frac{\cos\theta + \sin\theta - 1}{\cos\theta - \sin\theta + 1}\\[6mu]
&= \frac{\tan \theta}{1 + \operatorname{sgn}(\cos \theta)\sqrt{1 + \tan^2 \theta}}
= \frac{-1+\operatorname{sgn}(\cos \theta)\sqrt{1+\tan^2 \theta}}{\tan \theta} \\[12mu]
&= \operatorname{sgn}(\sin \theta)\sqrt{\frac{1-\cos \theta}{1+\cos \theta}},
\end{aligned}
where {{math|sgn}} is the sign function. These identities can all be proven by making the substitutions and then simplifying using elementary algebra.
= Supplement and complement half-tangent functions =
File:Half tangent functions.png
File:Four stereographic projections of the circle.png
The half-tangent of the supplement and/or complement of angle measure are also the stereographic projections of the complex unit circle from one of the four cardinal points onto the opposite axis. If and
:
\tan\tfrac12\theta\,
&= \quad h
&&=\;&-i\frac{z - 1}{z + 1} &
&&= \frac{\sin\theta}{1 + \cos\theta}
&&= \csc \theta - \cot \theta
= \cot\tfrac12(\pi - \theta)
\\[12mu]
\tan\tfrac12(\pi - \theta)
&= \quad \frac1h
&&= &i\frac{z + 1}{z - 1} &
&&= \frac{\sin\theta}{1 - \cos\theta}
&&= \csc \theta + \cot \theta
= \cot\tfrac12\theta
\\[12mu]
\tan\tfrac12\bigl(\tfrac12\pi - \theta\bigr)
&= \frac{1 - h}{1 + h}
&&= & i\frac{z - i}{z + i} &
&&= \frac{\cos\theta}{1 + \sin\theta}
&&= \sec \theta - \tan \theta
= \cot\tfrac12\bigl(\tfrac12\pi + \theta\bigr)
\\[12mu]
\tan\tfrac12\bigl(\tfrac12\pi + \theta\bigr)
&= \frac{1 + h}{1 - h}
&&= &-i\frac{z + i}{z - i} &
&&= \frac{\cos\theta}{1 - \sin\theta}
&&= \sec \theta + \tan \theta
= \cot\tfrac12\bigl(\tfrac12\pi - \theta\bigr)
\end{alignat}
The logarithm of the last of these is the inverse Gudermannian function, When applied to the latitude this is the vertical coordinate of the Mercator projection, historically called the meridional part. (See {{slink|#Geodesy and cartography}} below.)
= Series =
The half-tangent functions have the power series
:
h = \tan\tfrac12\theta
&= \sum_{k=0}^\infty \frac{C_n}{2^{n+1}(2n+1)!}\theta^{2n+1}
= \sum_{k=0}^\infty \frac{(2^{2n} - 1)|B_{2n}|}{2n(2n+1)!}\theta^{2n+1} \\[8mu]
&= \frac12 \theta + \frac1{24}\theta^3 + \frac1{240}\theta^5 + \frac{17}{40320} \theta^7 + \cdots \\[18mu]
\tan\tfrac12\bigl(\theta + \tfrac12\pi\bigr)
&= \sec \theta + \tan \theta
= \sum_{k=0}^\infty \frac{A_n}{n!}\theta^{n} \\[8mu]
&= 1 + \theta + \frac12\theta^2 + \frac13\theta^3 + \frac5{24}\theta^4 + \frac2{15}\theta^5 + \cdots
\end{align}
valid for and respectively, where are the reduced tangent numbers ({{OEIS2C|id=A002105}}), are the even Bernoulli numbers (even terms of {{OEIS2C|id=A164555}} / {{OEIS2C|id=A027642}}), and are the Euler zigzag numbers ({{OEIS2C|id=A000111}}).
Inverse half-tangent function
The inverse half-tangent function is the stereographic analog of a sawtooth wave on the periodic interval or the argument function of a unit-magnitude complex number. It is discontinuous at
:
It can be written explicitly in terms of the natural logarithm as
:
= Via repeated square root =
The oldest and conceptually simplest way to approximate angle measure as a function of half-tangent is by repeated half-tangent square roots, used by Archimedes in Measurement of a Circle (ca. 250 BCE) to approximate the circumference a circle using the perimeter of a regular 96-gon.Specifically Archimedes approximated by repeatedly applying the identity{{pb}}
{{bi|left=.5|1=}}{{pb}}
expressed as a geometrical construction in the style of Euclid's Elements.
:
where
:
This is a nearly equivalent process to finding the argument of the unit-magnitude complex number by repeatedly taking the ordinary square root:{{cite journal |last=Bagby |first=Richard J. |year=1998 |title=A Convergence of Limits |journal=Mathematics Magazine |volume=71 |number=4 |pages=270-277 |jstor=2690698 |doi=10.1080/0025570X.1998.11996651 }}{{pb}}
To be precise, it is equivalent to{{pb}}
{{bi|left=.5|1=}}{{pb}}
the denominator of which converges to
:
= Inverse series =
The Taylor series of converges for
:
\theta = 2\arctan h
&= \sum_{k=0}^\infty \frac{2(-1)^k}{2k+1}h^{2k+1} \\[6mu]
&= 2\left(h - \frac13h^3 + \frac15h^5 - \frac17h^7 + \cdots\right).
\end{align}
This is twice Gregory's series for the inverse tangent, discovered by Mādhava of Sangamagrāma or his followers in the 14th–15th century, and independently discovered by James Gregory in 1671 and Gottfried Leibniz in 1673.
{{cite journal |last=Roy |first=Ranjan |year=1990 |title=The Discovery of the Series Formula for {{mvar|π}} by Leibniz, Gregory and Nilakantha |journal=Mathematics Magazine |volume=63 |number=5 |pages=291–306 |url=https://www.maa.org/sites/default/files/images/upload_library/22/Allendoerfer/1991/0025570x.di021167.02p0073q.pdf |doi=10.1080/0025570X.1990.11977541 }}
{{pb}}{{cite journal |last=Horvath |first=Miklos |title=On the Leibnizian quadrature of the circle. |journal=Annales Universitatis Scientiarum Budapestiensis (Sectio Computatorica) |volume=4 |year=1983 |pages=75-83 |url=http://ac.inf.elte.hu/Vol_004_1983/075.pdf }}
Isaac Newton accelerated the convergence of this series in 1684 (in an unpublished work; others independently discovered the result and it was later popularized by Leonhard Euler's 1755 textbook; Euler wrote two proofs in 1779), yielding a series converging for {{nobr|1=
{{cite book |last=Roy |first=Ranjan |year=2021 |orig-year=1st ed. 2011 |title=Series and Products in the Development of Mathematics |edition=2 |volume=1 |publisher=Cambridge University Press |pages=215–216, 219–220}}
{{pb}}{{cite web |last=Sandifer |first=Ed |year=2009 |title=Estimating π |website=How Euler Did It |url=http://eulerarchive.maa.org/hedi/HEDI-2009-02.pdf }} Reprinted in {{cite book |last=Sandifer |first=Ed |display-authors=0 |year=2014 |title=How Euler Did Even More |pages=109-118 |publisher=Mathematical Association of America}}
{{pb}}{{cite book |last=Newton |first=Isaac |authorlink=Isaac Newton |year=1971 |editor-last=Whiteside |editor-first=Derek Thomas |editor-link=Tom Whiteside |title=The Mathematical Papers of Isaac Newton |volume=4, 1674–1684 |publisher=Cambridge University Press |pages=526–653 }}
{{pb}}{{harvp|Euler|1755}} [https://archive.org/details/institutiones-calculi-differentialis-cum-eius-vsu-in-analysi-finitorum-ac-doctri/page/318 §2.2.30 p. 318] ([http://17centurymaths.com/contents/euler/diffcal/part2ch2.pdf English translation])
{{pb}}{{cite journal |last=Euler |first=Leonhard |author-link=Leonhard Euler |year=1798 |orig-year=written 1779 |title=Investigatio quarundam serierum, quae ad rationem peripheriae circuli ad diametrum vero proxime definiendam maxime sunt accommodatae |journal=Nova acta academiae scientiarum Petropolitinae |volume=11 |pages=133–149, 167–168 |url=https://archive.org/details/novaactaacademia11petr/page/133 |id=[https://scholarlycommons.pacific.edu/euler-works/705/ E 705] }}
{{pb}}{{citation |author=Hwang Chien-Lih |year=2005 |title=An elementary derivation of Euler's series for the arctangent function |journal=The Mathematical Gazette |volume=89 |issue=516 |pages=469–470 |doi=10.1017/S0025557200178404 }}}}
:
\theta
&= \frac {2h} {1 + h^2}
\sum_{n=0}^\infty \prod_{k=1}^n \frac{2k}{2k+1} \, \frac{h^2}{1 + h^2} \\[10mu]
&= 2C_{1/2}(h)\left(
S_{1/2}(h) + \frac23S_{1/2}(h)^3 + \frac{2\cdot 4}{3 \cdot 5}S_{1/2}(h)^5
+ \frac{2\cdot4\cdot6}{3\cdot5\cdot7}S_{1/2}(h)^7 + \cdots
\right) \\[10mu]
&= 2S_{1/2}(h)\ {_2F_1}\bigl(\tfrac12, \tfrac12; \tfrac32; S_{1/2}(h)^2 \bigr),
\end{align}
where is the half-angle stereographic sine, is the half-angle stereographic cosine (see § Circular functions › Half-angle identities above), and is the hypergeometric function.
{{cite book |last1=Gradshteyn |first1=Izrail Solomonovich |last2=Ryzhik |first2=Iosif Moiseevich |year=2007 |title=Table of Integrals, Series, and Products |edition=7th |editor1-last=Jeffrey |editor1-first=Alan |editor2-last=Zwillinger |editor2-first=Daniel |publisher=Academic Press |chapter=§1.643 |page=61 |chapter-url=https://archive.org/details/GradshteinI.S.RyzhikI.M.TablesOfIntegralsSeriesAndProducts/page/n109/ }} The partial sums of this series,
:
are the odd stereographic polynomials (see {{slink||Stereographic polynomials}} above) matching the derivatives of the function at the origin. In other words, this is the stereographic analog of the Taylor series. Because the function is discontinuous at while each partial sum is a smooth function with value there, the series converges slowly for large values of
Another series, also found in Euler (1755), is the Fourier series for a sawtooth wave, which when written as a stereographic series also converges for {{harvp|Euler|1755}} [https://archive.org/details/institutiones-calculi-differentialis-cum-eius-vsu-in-analysi-finitorum-ac-doctri/page/477/ §2.6.166 p. 477] ([http://17centurymaths.com/contents/euler/diffcal/part2ch6.pdf English translation])
:
\theta
&= 2 \sum_{k=1}^\infty
\frac{(-1)^{k+1}}{k}S_k(h) \\[10mu]
&= 2\left(S_1(h) - \frac12S_2(h) + \frac13S_3(h) - \frac14S_4(h) + \cdots\right).
\end{align}
The partial sums of this series oscillate about and suffer from the Gibbs phenomenon near {{harvp|Zygmund|1959}} [https://archive.org/details/trigonometricser0001zygm/page/61 §2.9. Gibbs's phenomenon p. 61]
Because these two series converge to the same function (including at the discontinuity where they both converge to {{nobr|1=),}} they are the same.{{harvp|Zygmund|1959}} [https://archive.org/details/trigonometricser0001zygm/page/325 §9.3 Uniqueness of the representation by trigonometric series, pp. 325–330] (See Convergence of Fourier series.) So the coefficients of the {{mvar|n}}th partial sum of Newton's series – when written as in the standard basis – converge to the coefficients of the stereographic series:
= Continued fraction =
A generalized continued fraction for is
:
\theta
= 2\arctan h =
\dfrac{2h}{1} {{}\atop+}
\dfrac{h^2}{3} {{}\atop+}
\dfrac{2^2h^2}{5} {{}\atop+}
\dfrac{3^2h^2}{7} {{}\atop+\,\cdots},
converging for all in the complex plane except on the imaginary axis from to The convergents of this continued fraction are the Padé approximants,{{cite book |last1=Baker |first1=George A. |last2=Graves-Morris |first2=Peter |year=1996 |orig-year=1st edition 1982 |title=Padé Approximants |edition=2nd |publisher=Cambridge University Press |page=174}}
:
2h,\quad
\frac{6h}{3 + h^2},\quad
\frac{30h + 8h^3}{15 + 9h^2},\quad
\frac{210h + 110h^3}{105 + 90h^2 + 9h^4}, \quad \ldots.
Applications
= Evaluation of trigonometric integrals =
{{main|Tangent half-angle substitution}}
- Jeffrey, D. J. (1997). Rectifying Transformations for the Integration of Rational Trigonometric Functions. Journal of Symbolic Computation, 24(5), 563–573. doi:10.1006/jsco.1997.0152
= Trigonometric Lagrange interpolation =
= Number theory =
- {{cite journal |last1=
Goins |first1=Edray Herber |last2=
Maddox |first2=Davin |year=
2006 |title=Heron triangles via elliptic curves |journal=Rocky Mountain Journal of Mathematics |volume=36 |number=5 |pages=1511-1526 | doi=10.1216/rmjm/1181069379 |doi-access=free
}}
- {{cite book| last=
Gill |first=Charles |year=
1848 |title=Application of the angular analysis to the solution of indeterminate problems of the second degree |publisher=Wiley |url=https://archive.org/details/applicationofang00gill/
}}
- Dickson chapter on Heron triangles etc. https://archive.org/details/historyoftheoryo02dick_0/page/191
- Michael J. Beeson (1992) Triangles with Vertices on Lattice Points. American Mathematical Monthly, Vol. 99, No. 3, pp. 243-252
- MacLeod, Allan. "Elliptic curves in recreational number theory." arXiv preprint arXiv:1610.03430 (2016).
= Approximations of {{mvar|π}} =
Mathematicians of the 17th–18th century were interested in computing specific values of the arctangent function (see § Half-tangent function › Inverse series above) to compute approximations of π. In 1706 John Machin discovered the identities (using the notation of this article){{harvp|Abrate|Barbero|Cerruti|Murru|2014}} use notation similar to this but with the symbol instead of
:
&1 = \tfrac12 \oplus \tfrac13,\quad
1 = \bigl(\tfrac12\bigr)^{\oplus2} \ominus \tfrac1{7},\quad
1 = \bigl(\tfrac13\bigr)^{\oplus2} \oplus \tfrac1{7},\quad \\[5mu]
&1 = \bigl(\tfrac14\bigr)^{\oplus3} \ominus \tfrac5{99},\quad
1 = \bigl(\tfrac15\bigr)^{\oplus4} \ominus \tfrac1{239},
\end{align}
the last of which he used, in the form to compute to {{math|100}} decimal digits. Other mathematicians developed similar identities, and they are now sometimes called Machin-like formulas.{{cite book |last=Jones |first=William |author-link=William Jones (mathematician) |year=1706 |title=Synopsis Palmariorum Matheseos |place=London |publisher=J. Wale |url=https://archive.org/details/SynopsisPalmariorumMatheseosOrANewIntroductionToTheMathematics/page/n283/ |pages=[https://archive.org/details/SynopsisPalmariorumMatheseosOrANewIntroductionToTheMathematics/page/n261/ 243], [https://archive.org/details/SynopsisPalmariorumMatheseosOrANewIntroductionToTheMathematics/page/n283/ 263] |quote=There are various other ways of finding the Lengths, or Areas of particular Curve Lines or Planes, which may very much facilitate the Practice; as for instance, in the Circle, the Diameter is to Circumference as 1 to
\overline{\tfrac{16}5 - \tfrac4{239}}
- \tfrac13\overline{\tfrac{16}{5^3} - \tfrac4{239^3}}
+ \tfrac15\overline{\tfrac{16}{5^5} - \tfrac4{239^5}}
-,\, \&c. =
{{math|1=3.14159, &c. = π}}. This Series (among others for the same purpose, and drawn from the same Principle) I receiv'd from the Excellent Analyst, and my much Esteem'd Friend Mr. John Machin; and by means thereof, Van Ceulen{{'}}s Number, or that in Art. 64.38. may be Examin'd with all desireable Ease and Dispatch.
}}
{{pb}}Reprinted in {{cite book |last=Smith |first=David Eugene |year=1929 |title=A Source Book in Mathematics |publisher=McGraw–Hill |chapter=William Jones: The First Use of {{mvar|π}} for the Circle Ratio |chapter-url=https://archive.org/details/sourcebookinmath1929smit/page/346/ |pages=346–347 }}{{cite journal |last=Euler |first=Leonhard |author-link=Leonhard Euler |year=1744 |orig-year=written 1737 |title=De variis modis circuli quadraturam numeris proxime exprimendi |journal=Commentarii academiae scientiarum Petropolitanae |volume=9 |pages=222-236 |url=https://archive.org/details/commentariiacade09impe/page/222/ |id=[https://scholarlycommons.pacific.edu/euler-works/74/ E 74]}}
Sometimes the notation is used for so the relations above can be written:{{cite journal |last=Lehmer |first=Derrick H. |author-link=D. H. Lehmer |year=1938 |title=On Arccotangent Relations for {{mvar|π}} |journal=American Mathematical Monthly |volume=45 |number=10 |pages=657-664 Published by: Mathematical Association of America
|jstor=2302434 |doi=10.1080/00029890.1938.11990873 |url=https://www.maa.org/sites/default/files/pdf/pubs/amm_supplements/Monthly_Reference_7.pdf }}
:
&[1] = [2] + [3],\quad
[1] = 2[2] - [7],\quad
[1] = 2[3] + [7], \\[5mu]
&[1] = 3[4] - \bigl[\tfrac{99}5\bigr],\quad
[1] = 4[5] - [239].
\end{align}
Alternately using the identities (see {{slink|#Supplements}} above) and , they can be algebraically manipulated into reciprocal forms:
:
&1 = \ominus 2 \ominus 3,\quad
1 = 2^{\oplus2} \ominus 7,\quad
1 = 3^{\oplus2} \oplus 7, \\[5mu]
&1 = \tfrac{99}5 \ominus 4^{\oplus3},\quad
1 = 239 \ominus 5^{\oplus4}.
\end{align}
Euler investigated infinite sums of arctangents in the mid 18th century, developing series such as:{{cite journal
|last=Euler |first=Leonhard |year=1764 |orig-year=written 1758 |title=De progressionibus arcuum circularium, quorum tangentes secundum certam legem procedunt |trans-title=On progressions of arcs of circles, of which the accompanying tangents proceed by a certain law |journal=Novi Commentarii academiae scientiarum Petropolitanae |volume=9 |pages=40-52 |url=https://archive.org/details/novicommentariac29impe/page/40/ }} [https://scholarlycommons.pacific.edu/euler-works/280/ E 280]
:
\bigoplus_{k=1}^\infty \frac{1}{k^2 + k + 1}
= \frac13 \oplus \frac17 \oplus \frac1{13}
\oplus \frac1{21} \oplus \frac1{31} \oplus \cdots
= 1.
Derrick Lehmer discovered in 1936 that the series of arctangents of reciprocals of odd-index Fibonacci numbers starting from the third converges to {{nobr|,{{cite journal |last=Lehmer |first=Derrick H. |author-link=D. H. Lehmer |year=1936 |title=3801. |department=Problems and Solutions |journal=American Mathematical Monthly |volume=43 |issue=9 |page=580 |doi=10.1080/00029890.1936.11987899 |url=https://archive.org/details/sim_american-mathematical-monthly_1936_43/page/580/ |quote=Show that {{math|1=arccot 1 =}} {{math| arccot 2 + arccot 5 + }} {{math|arccot 13 + arccot 34 + ...}} where these integers constitute every other term of the Fibonacci series and satisfy the recurrence }}
{{pb}}{{cite journal |last1=Hoggatt |first1=Verner E., Jr. |author1-link=Verner Emil Hoggatt Jr. |last2=Ruggles |first2=Ivan D. |year=1964 |title=A Primer for Fibonacci Numbers – Part V |journal=Fibonacci Quarterly |volume=2 |number=1 |pages=59–65 |url=https://fq.math.ca/Scanned/2-1/hoggatt2.pdf }}
{{pb}}{{cite journal |last=Trigg |first=Charles W. |year=1973 |title=Geometric Proof of a Result of Lehmer's |journal=Fibonacci Quarterly |volume=11 |number=5 |pages=539–540 |url=https://www.fq.math.ca/Scanned/11-5/trigg.pdf }}
{{pb}}{{cite book |last=Grimaldi |first=Ralph |author-link=Ralph Grimaldi |year=2012 |title=Fibonacci and Catalan Numbers: An Introduction |publisher=Wiley |page=116 }}
}}
:
\bigoplus_{k=1}^\infty \frac{1}{F_{2k+1}}
= \frac12 \oplus \frac1{5} \oplus \frac1{13}
\oplus \frac1{34} \oplus \frac1{89} \oplus \cdots
= 1.
Taking the even Fibonacci numbers instead we have{{cite journal |last=Johnston |first=L. S. |year=1940 |title=The Fibonacci Sequence and Allied Trigonometric Identities |journal=American Mathematical Monthly |volume=47 |number=2 |pages=85-89 |doi=10.2307/2303358 |jstor=2303358 }}
:
\frac13 \boxplus \frac1{8} \boxplus \frac1{21}
\boxplus \frac1{55} \boxplus \cdots \boxplus \frac{1}{F_{2k}} \boxplus \cdots
= \frac12.
These series telescope because reciprocals of consecutive Fibonacci numbers satisfy a variant of Cassini's identity
:
\frac1{F_{2k}} = \dfrac1{F_{2k-1}} \boxminus \dfrac1{F_{2k+1}}, \qquad
\frac1{F_{2k+1}} = \dfrac1{F_{2k}} \ominus \dfrac1{F_{2k+2}}.
We can also include the zeroth term of Lehmer's series or extend it in the other direction (it also telescopes),{{cite journal |last=Katayama |first=Shin-ichi |year=2011 |title=Generalized Goggins's Formula for Lucas and Companion Lucas Sequences |journal=Journal of Mathematics, Tokushima University |volume=45 |url=https://www-math.ias.tokushima-u.ac.jp/journal/2011/20113.pdf}}
:
\bigoplus_{k=0}^\infty \frac{1}{F_{2k+1}} = \frac10 = \infty, \qquad
\bigoplus_{k=-\infty}^\infty \frac{1}{F_{2k+1}} = 0.
= Approximations of {{math|log ''k''}} =
The Taylor series for the natural logarithm is the Mercator series, like Gregory's series for arctangent a slowly converging alternating series,
:
\log x = \sum_{k=1}^\infty \frac{(-1)^{k-1}(x-1)^k}{k}, \quad |x + 1| \leq 1.
But this is impractically slow for computing and does not converge at all for larger values. The natural logarithm can be rewritten as an inverse hyperbolic half-tangent because
:
(see {{slink|#Cayley transform}} above).
It is thus possible to compute ​​ etc. using the Taylor series for inverse hyperbolic half-tangent,
:
2\operatorname{artanh} h
&= \sum_{k=0}^\infty \frac{2}{2k+1}h^{2k+1} = 2\left(h + \frac13h^3 + \frac15h^5 + \frac17h^7 + \cdots\right).
\end{align}
However, this series still converges slowly unless the argument is small. Similar to the #Approximations of π above, these fractions can be reduced by Machin-like formulas with hyperbolic tangent addition, such as:
{{cite book |last=Arndt |first=Jörg |year=2010 |title=Matters Computational: Ideas, Algorithms, Source Code |publisher=Springer |url=https://www.jjj.de/fxt/#fxtbook |chapter=32. Logarithm and exponential function |pages=622–640 }}
{{pb}}
{{cite web |last=Johansson |first=Fredrik |year=2013 |title= Machin-like formulas for logarithms |website=fredrikj.net
|url=https://fredrikj.net/blog/2013/03/machin-like-formulas-for-logarithms/ }}
{{pb}}
{{cite arXiv |last=Johansson |first=Fredrik |year=2022 |title=Computing elementary functions using multi-prime argument reduction |eprint=2207.02501 }}
:
&\tfrac13 = \bigl(\tfrac17\bigr)^{\boxplus2} \boxplus \tfrac1{17},\quad
\tfrac12 = \bigl(\tfrac17\bigr)^{\boxplus3} \boxplus \bigl(\tfrac1{17}\bigr)^{\boxplus2}; \\[5mu]
&\tfrac13 = \bigl(\tfrac1{31}\bigr)^{\boxplus7} \boxplus \bigl(\tfrac1{49}\bigr)^{\boxplus5} \boxplus \bigl(\tfrac1{161}\bigr)^{\boxplus3},\quad
\tfrac12 = \bigl(\tfrac1{31}\bigr)^{\boxplus11} \boxplus \bigl(\tfrac1{49}\bigr)^{\boxplus8} \boxplus \bigl(\tfrac1{161}\bigr)^{\boxplus5}, \\[5mu]
&\tfrac23 = \bigl(\tfrac1{31}\bigr)^{\boxplus16} \boxplus \bigl(\tfrac1{49}\bigr)^{\boxplus12} \boxplus \bigl(\tfrac1{161}\bigr)^{\boxplus7}.
\end{align}
So for example {{math|log 2}} can be computed as the sum of three hyperbolic arctangents with small arguments, the series for which converge much more quickly:
:
\log{2} = 7 \cdot 2\operatorname{artanh} \tfrac1{31} + 5 \cdot 2\operatorname{artanh}\tfrac1{49} + 3 \cdot 2\operatorname{artanh}\tfrac1{161}.
As in the circular case these formulas can be algebraically manipulated using the identities and into reciprocal forms:
:
&3 = 7^{\boxplus2} \boxplus 7,\quad 2 = 7^{\boxplus3} \boxplus 17^{\boxplus2}; \\[5mu]
&3 = 31^{\boxplus7} \boxplus 49^{\boxplus5} \boxplus 161 ^{\boxplus3},\quad
2 = 31^{\boxplus11} \boxplus 49^{\boxplus8} \boxplus 161 ^{\boxplus5}, \\[5mu]
&\tfrac32 = 31^{\boxplus16} \boxplus 49^{\boxplus12} \boxplus 161 ^{\boxplus7}.
\end{align}
= Directional statistics =
- {{cite journal |last1=
Downs |first1=Thomas D. |last2=
Mardia |first2=Kantilal Vardichand |author2-link=Kanti Mardia |year=
2002 |title=Circular Regression |journal=Biometrika |volume=89 |number=3 |pages=683-697 |jstor=4140611 |doi=10.1093/biomet/89.3.683 }}
- {{cite journal |last1=
Minh |first1=Do Le |last2=
Farnum |first2=Nicholas R. |year=
2003 |title=Using bilinear transformations to induce probability distributions |journal= Communications in Statistics – Theory and Methods |volume=32 |number=1 |pages=1–9 |doi=10.1081/STA-120017796
}}
- {{cite journal |last1=
Abe |first1=T. |last2=
Shimizu |first2=K. |last3=
Pewsey |first3=A. |year=
2010 |title=Symmetric unimodal models for directional data motivated by inverse stereographic projection |journal=Journal of the Japan Statistical Society |volume=40 |number=1 |pages=45–61 |doi=10.14490/jjss.40.045
}}
- {{cite journal |last1=
Kato |first1=Shogo |last2=
Jones |first2=M. C. |year=
2010 |title=A Family of Distributions on the Circle With Links to, and Applications Arising From, Möbius Transformation |journal=Journal of the American Statistical Association |volume=105 |issue=489 |pages=249-262 |doi=10.1198/jasa.2009.tm08313 |url=http://stats-www.open.ac.uk/TechnicalReports/KJJASA.pdf
}}
- {{cite journal |last1=
Phani |first1=Y. |last2=
Girija |first2=S. V. S. |last3=
Rao |first3=AV Dattatreya |year=
2013 |title=Arc Tan–Exponential Type Distribution Induced by Stereographic Projection/Bilinear Transformation on Modified Wrapped Exponential Distribution |journal=Journal of Applied Mathematics, Statistics and Informatics |volume=9 |number=1 |pages=69-74 |doi=10.2478/jamsi-2013-0007 |doi-access=free
}}
- {{cite journal |last1=
Pewsey |first1=Arthur |last2=
García-Portugués |first2=Eduardo |year=
2021 |title=Recent advances in directional statistics |journal=Test |volume=30 |number=1 |pages=1-58 |doi=10.1007/s11749-021-00759-x |arxiv=2005.06889
}}
- {{cite arxiv |last=
Kent |first=John T. |year=
2022 |title=Directional distributions and the half-angle principle |eprint=2202.06611
}}
= Analog circuit design =
- {{cite journal |last=Luck |first=David G.C. |year=1949 |title=Properties of some wide-band phase-splitting networks |journal=Proceedings of the IRE |volume=37 |number=2 |pages=147-151 |doi=10.1109/JRPROC.1949.230938 }}
- Richards, P. I. (1948). Resistor-Transmission-Line Circuits. Proceedings of the IRE, 36(2), 217–220. doi:10.1109/jrproc.1948.233274
- http://synth.stromeko.net/diy/OTA.pdf
= Kinematics of linkages =
- {{cite journal |last=
Bennett |first=Geoffrey Thomas |authorlink=Geoffrey Thomas Bennett |year=
1903 |title=A New Mechanism |journal=Engineering |volume=76 |issue=Dec 4, 1903 |pages=777–778 |url=https://archive.org/details/sim_engineering_july-december-1903_76/page/777/mode/1up
}}
- {{cite journal |last=
Bennett |first=Geoffrey Thomas |authorlink=Geoffrey Thomas Bennett |year=
1914 |title=The Skew Isogram Mechanism |journal=Proceedings of the London Mathematical Society, ser. 2 |volume=13 |issue=1 |pages=151–173 |doi=10.1112/plms/s2-13.1.151 |url=https://ia800708.us.archive.org/view_archive.php?archive=/28/items/crossref-pre-1923-scholarly-works/10.1112%252Fplms%252Fs2-10.1.116.zip&file=10.1112%252Fplms%252Fs2-13.1.151.pdf
}}
- {{cite book |last=
Dimentberg |first=F.M. |year=
1968 |orig-year=1965 |title=The screw calculus and its applications in mechanics |publisher=AFSC Foreign Technology Division |url=https://apps.dtic.mil/sti/pdfs/AD0680993.pdf
}} Translated from the Russian Винтовое исчисление и его приложения в механике. Moscow: Nauka. 1965.
- {{cite journal |last1=
Duffy |first1=J. |last2=
Crane |first2=C. |year=
1980 |title=A displacement analysis of the general spatial 7-link, 7R mechanism |journal=Mechanism and Machine Theory |volume=15 |number=3 |pages=153-169 |doi=10.1016/0094-114X(80)90001-4
}}
- {{cite journal |last1=
Nitescu |first1=P. N. |last2=
Manolescu |first2=N. I. |year=
1980 |title=On the structural synthesis and kinematic analysis of open-loop manipulation |journal=Mechanism and Machine Theory |volume=15 |number=4 |pages=295–317 |doi=10.1016/0094-114x(80)90023-3
}}
- Freudenstein & Beigi 1986 http://www.internetserver.com/~beigi/ps/beigi_1986_mechanism_and_machine_theory.pdf
- {{cite journal |last1=
Shoham |first1=Moshe |last2=
Jen |first2=Fu-Hua |year=
1993 |title=On rotations and translations with application to robot manipulators |journal=Advanced Robotics |volume=8 |number=2 |pages=203-229
}}
- {{cite book |last1=
Kovács |first1=Peter |last2=
Hommel |first2=Günter |year=
1993 |chapter=On the tangent-half-angle substitution |editor1-last=Angeles |editor1-first=Jorge |editor2-last=Hommel |editor2-first=Günter |editor3-last=Kovács |editor3-first=Peter |title=Computational Kinematics |pages=27-39 |publisher=Springer |doi=10.1007/978-94-015-8192-9_3
}}
- {{cite book |last1=
Hertz |first1=Roger B. |last2=
Hughes |first2=Peter C. |year=
1993 |chapter=Forward Kinematics of a 3-DOF Variable-Geometry-Truss Manipulator |editor1-last=Angeles |editor1-first=Jorge |editor2-last=Hommel |editor2-first=Günter |editor3-last=Kovács |editor3-first=Peter |title=Computational Kinematics |publisher=Springer |pages=241–250 |doi=10.1007/978-94-015-8192-9_22
}}
- {{cite book |last1=
Crane |first1=Carl D., III |last2=
Duffy |first2=Joseph |year=
1998 |title=Kinematic analysis of robot manipulators |publisher=Cambridge
}}
- Selig, Jon M. "Exponential and Cayley maps for dual quaternions." Advances in applied Clifford algebras 20, no. 3 (2010): 923–936.
- {{cite book |last1=
McCarthy |first1=J. Michael |last2=
Soh |first2=Gim Song |year=
2011 |title=Geometric design of linkages |edition=2nd |publisher=Springer |doi=10.1007/978-1-4419-7892-9
}}
- Sinha, Sasanka Sekhar, Rajeevlochana G. Chittawadigi, and Subir Kumar Saha. "Inverse kinematics for general 6R manipulators in RoboAnalyzer." (2018): 1–9.
- https://project.inria.fr/roboticsprincipia/files/2019/01/Robotica-Husty.pdf
- Wenz, Michael, and Heinz Worn. "Solving the inverse kinematics problem symbolically by means of knowledge-based and linear algebra-based methods." In 2007 IEEE Conference on Emerging Technologies and Factory Automation (EFTA 2007), pp. 1346-1353. IEEE, 2007.
- M. John D. Hayes∗, Mirja Rotzoll, Quinn Bucciol, Zachary A. Copeland (2023) "Planar and spherical four-bar linkage vi-vj algebraic input-output equations" https://carleton.ca/johnhayes/wp-content/uploads/MECHMT-D-22-02564-R1.pdf
= Chemistry =
- https://www.math.unm.edu/~aca/ACA/2011/Nonstandard/Lewis.pdf
- {{cite journal |last1=
Coutsias |first1=Evangelos A. |last2=
Seok |first2=Chaok |last3=
Wester |first3=Michael J. |last4=
Dill |first4=Ken A. |year=
2006 |title=Resultants and loop closure |journal=International Journal of Quantum Chemistry |volume=106 |number=1 |pages=176-189 }}
- {{cite journal |last1=
Hassan |first1=Mosavverul |last2=
Coutsias |first2=Evangelos A. |year=
2021 |title=Protein secondary structure motifs: A kinematic construction |journal=Journal of Computational Chemistry |volume=42 |number=5 |pages=271-292 }}
= Physics =
https://users.manchester.edu/facstaff/gwclark/PHYS301/AJP%20Articles/AJP%20Biot%20Savart%20magnetic%20needle.pdf
== Keplerian orbits ==
The relation between the half-tangent of true anomaly and the half-tangent of eccentric anomaly can be written in terms of the eccentricity In the notation of this article, with the stereographic cosine,{{Cite book |last=Gauss |first=Carl Friedrich |year=1809 |title=Theoria motus corporum coelestium in sectionibus conicis solem ambientium |language=la |publisher=Friedrich Perthes & Johann Heinrich Besser |location=Hamburg |url=https://gutenberg.beic.it/webclient/DeliveryManager?pid=12217180&search_terms=DTL71 |at=§1.1.8, pp. 7–8}} Collected in {{cite book |last=Gauss |first=Carl Friedrich |display-authors=0 |year=1871 |title=Carl Friedrich Gauss Werke |volume=7 |chapter=Theoria motus corporum coelestium ... |editor-last=Schering |editor-first=Ernst Julius |place=Gotha |publisher=Friedrich Andreas Perthes |chapter-url=https://archive.org/details/carlfriedrichgau07gaus/page/17/ |at=§1.1.8, pp. 17–18
}} Published in English as {{cite book |last=Gauss |first=Carl Friedrich |display-authors=0 |year=1857 |title=Theory of the Motion of Heavenly Bodies Moving about the Sun in Conic Sections |translator-last=Davis |translator-first=Charles Henry |publisher=Little, Brown & Co. |url=https://archive.org/details/theoryofmotionof00gausrich/page/n30/ |at=§1.1.8, p. 9 }}
:
or equivalently,
:
- Euler used half-tangents extensively in calculating parabolic comet orbits: https://archive.org/details/operapostumamath02euleuoft/page/402/mode/2up https://arxiv.org/pdf/2105.03340.pdf
- http://www.ingaero.uniroma1.it/attachments/1978_2008_JGCD_Lambert.pdf
= Origami =
- {{cite journal |last=
Bricard |first=Raoul |authorlink=Raoul Bricard |year=
1897 |title=Mémoire sur la théorie de l’octaèdre articulé |journal=Journal de mathématiques pures et appliquées |series=5e série |volume=3 |pages=113–150 |lang=fr |url=https://archive.org/details/s5journaldemat03liou/page/113/
}} Translated by E. A. Coutsias (2010) as [https://math.unm.edu/~vageli/papers/bricard3_6.pdf Memoir on the Theory of the Articulated Octahedron].
- {{cite journal |last=
Huffman |first=David A. |year=
1976 | title=Curvature and Creases: A Primer on Paper |journal=IEEE Transactions on Computers |volume=C-25 |number=10 |pages=1010–1019 |doi=10.1109/tc.1976.1674542 |url=https://organicorigami.com/thrackle/class/hon394/papers/HuffmanCurvatureAndCreases.pdf
}}
- {{cite journal| last1=
Akitaya |first1=Hugo |last2=
Demaine |first2=Erik D. |last3=
Horiyama |first3=Takashi |last4=
Hull |first4=Thomas C. |last5=
Ku |first5=Jason S. |last6=
Tachi |first6=Tomohiro |year=
2020 |title=Rigid foldability is NP-hard |journal=Journal of Computational Geometry |volume=11 |number=1 |pages=93-124 |arxiv=1812.01160
}}
- {{cite journal |last1=
Lewis |first1=R. H. |last2=
Coutsias |first2=E. A. |year=
2016 |title=Flexibility of Bricard’s linkages and other structures via resultants and computer algebra |journal=Mathematics and Computers in Simulation |volume=125 |pages=152–167 |doi=10.1016/j.matcom.2014.11.002 }}
- {{cite arxiv |last1=
Hull |first1=Thomas C. |last2=
Urbanski |first2=Michael T. |year=
2018 |title=Rigid foldability of the augmented square twist |eprint=1809.04899
}}
- {{cite book |last1=
Evans |first1=Thomas A. |last2=
Lang |first2=Robert J. |last3=
Magleby |first3=Spencer P. |last4=
Howell |first4=Larry L. |year=
2015 |chapter=Rigidly Foldable Origami Twists |pages=119–130 |chapter-url=http://hdl.lib.byu.edu/1877/3521 |title=Origami6
|editor1-last=Miura |editor1-first=Koryo |editor2-last=Kawasaki |editor2-first=Toshikazu |editor3-last=Tachi |editor3-first=Tomohiro |editor4-last=Uehara |editor4-first=Ryuhei |editor5-last= Lang |editor5-first=Robert J. |editor6-last=Wang-Iverson |editor6-first=Patsy |display-editors=1 |publisher=American Mathematical Society
}}
- {{cite journal |last1=
Lang |first1=Robert J. |last2=
Magleby |first2=Spencer |last3=
Howell |first3=Larry |year=
2016 |title=Single Degree-of-Freedom Rigidly Foldable Cut Origami Flashers |journal=Journal of Mechanisms and Robotics |volume=8 |number=3 |pages=031005 |doi=10.1115/1.4032102 |url=https://langorigami.com/wp-content/uploads/2016/03/2016-J-JMR-RGDFL.pdf
}}
- {{cite journal |last1=
Farnham |first1=J. |last2=
Hull |first2=T.C. |last3=
Rumbolt |first3=A. |year=
2022 |title=Rigid folding equations of degree-6 origami vertices |journal=Proceedings of the Royal Society A |volume=478 |pages=20220051 |doi=10.1098/rspa.2022.0051 |doi-access=free }}
= Optics =
- Liu, Hong-Zhun, and Tong Zhang. "A note on the improved {{math|tan (ϕ(ξ) / 2)}}-expansion method." Optik 131 (2017): 273-278. https://doi.org/10.1016/j.ijleo.2016.11.029
= Geodesy and cartography =
Notes
{{Reflist|25em}}
References
{{refbegin|30em}}
- {{cite journal |last1=
Abrate |first1=Marco |last2=
Barbero |first2=Stefano |last3=
Cerruti |first3=Umberto |last4=
Murru |first4=Nadir |year=
2014 |title=Writing {{mvar|π}} as sum of arctangents with linear recurrent sequences, Golden mean and Lucas numbers |journal=International Journal of Number Theory |volume=10 |number=5 |pages=1309–1319 |doi=10.1142/s1793042114500286 |arxiv= 1409.6455
}}
- {{cite thesis |type=PhD |last=
Chisholm |first=Grace |author-link=Grace Chisholm Young |date=
1895 |title=Algebraisch-gruppentheoretische Untersuchungen zur spharischen Trigonometrie |lang=de |trans-title=Algebraic group-theoretic investigations into spherical trigonometry |publisher=University of Göttingen |url=https://books.google.com/books?id=VZUUAQAAIAAJ
}}
- {{cite book |last=
Euler |first=Leonhard |authorlink=Leonhard Euler |year=
1755 |title=Institutiones Calculi Differentialis |publisher=Academiae Imperialis Scientiarium Petropolitanae |lang=la |url=https://archive.org/details/institutiones-calculi-differentialis-cum-eius-vsu-in-analysi-finitorum-ac-doctri/ }} [https://scholarlycommons.pacific.edu/euler-works/212/ E 212]. Chapters 1–9 translated by John D. Blanton (2000) Foundations of Differential Calculus. Springer. Later translated by Ian Bruce (2011). [http://17centurymaths.com/contents/differentialcalculus.htm Euler's Institutionum Calculi Differentialis]. 17centurymaths.com.
- {{cite journal |last=
Euler |first=Leonhard |year=
1781 |title=De Mensura Angulorum Solidorum |journal=Acta Academiae Scientiarum Imperialis Petropolitanae |volume=1778 |issue=2 |pages=31–54 |lang=la |trans-title=On the Measure of Solid Angles |url=https://archive.org/details/actaacademiae02impe/page/31
}} E [https://scholarlycommons.pacific.edu/euler-works/514/ 514].
- {{cite journal |last=
Euler |first=Leonhard |year=
1782 |title=Trigonometria Sphaerica Universa, ex primis principiis breviter et dilucide derivata |journal=Acta Academiae Scientiarum Imperialis Petropolitanae |volume=1779 |issue=1 |pages=72–86 |lang=la |trans-title=Universal Spherical Trigonometry, briefly and clearly derived from first principles |url=https://archive.org/details/actaacademiaesci79impe/page/72
}} E [https://scholarlycommons.pacific.edu/euler-works/524/ 524]. [http://www.17centurymaths.com/contents/euler/e524tr.pdf English translation] by Ian Bruce, 2013. 17centurymaths.com.
- {{cite journal |last=
Hardy |first=Michael |year=
2015 |title=Stereographic Trigonometric Identities |journal=The American Mathematical Monthly |volume=122 |issue=1 |pages=43-47 |doi=10.4169/amer.math.monthly.122.01.43
}}
- {{cite arXiv |last1=
Huang |first1=Tinghao |last2=
Lalín |first2=Matilde |authorlink2=Matilde Lalín |last3=
Mila |first3=Olivier |date=
2021 |title= Spherical Heron Triangles and Elliptic Curves |eprint= 2112.07058
}}
- {{cite journal |last=
Kocik |first=Jerzy |year=
2012 |title=Geometric diagram for relativistic addition of velocities |journal=American Journal of Physics |volume=80 |issue=8 |pages=737-739 |doi=10.1119/1.4730931 |arxiv=1408.2435
}}
- {{cite book |last1=
Li |first1=Hongbo |last2=
Hestenes |first2=David |authorlink2=David Hestenes |last3=
Rockwood |first3=Alyn |year=
2001 |chapter=3. Spherical Conformal Geometry with Geometric Algebra |editor-last=Sommer |editor-first=Gerald |title=Geometric Computing with Clifford Algebras |pages=61-75 |publisher=Springer |chapter-url=http://geocalc.clas.asu.edu/pdf/CompGeom-ch3.pdf
}}
- {{cite book |last=
Needham |first=Tristan |year=
1997 |title=Visual Complex Analysis |publisher=Oxford University Press |url=https://archive.org/details/visualcomplexana0000need/ |url-access=limited
}}
- {{cite book |last=
Paeth |first=Alan W. |authorlink=Alan W. Paeth |year=
1991 |chapter=VIII.5 A half-angle identity for digital computation: The joys of the halved tangent |editor-last=Arvo |editor-first=James |title=Graphics Gems II |pages=381-386 |publisher=Morgan Kaufmann |chapter-url=https://archive.org/details/graphicsgemsii0000unse/page/381/ |chapter-url-access=registration |doi=10.1016/B978-0-08-050754-5.50082-7
}}
- {{cite journal |last=
Penner |first=Sidney |year=
1971 |title=An Interesting Correspondence and Its Consequences |journal=The Two-Year College Mathematics Journal |volume=2 |number=1 |pages=40-44 |doi=10.1080/00494925.1971.11973996
}}
- {{cite book |last=
Schubert |first=Hermann |author-link=Hermann Schubert |year=
1906 |title=Auslese aus meiner Unterrichts- und Vorlesungspraxis |trans-title=Selections from my lessons and lectures |language=de |volume=3 |at=[https://archive.org/details/ausleseausmeine03schugoog/page/n183/ "VI. Das Formelsystem der sphärischen Trigonometrie"] [The formula system of spherical trigonometry], pp. 179–201; [https://archive.org/details/ausleseausmeine03schugoog/page/n206/ "VII. Herstellung heronischer sphärischer Dreiecke"] [Producing Heronian spherical triangles], pp. 202–250 |publisher=G.J. Göschen'sche |doi=10.1515/9783111590585
}}
- {{cite book |last=
Study |first=Eduard |authorlink=Eduard Study |year=
1893 |title=Sphärische trigonometrie, orthogonale substitutionen und elliptische functionen |publisher=S. Hirzel |url=https://hdl.handle.net/2027/coo.31924059019046
}}
- {{cite conference |last=
Study |first=Eduard |authorlink=Eduard Study |year=
1896 |orig-year=1893 |publication-date=|title=Some Researches in Spherical Trigonometry |pages=382–394 |url=https://archive.org/details/cu31924062544352/page/382/ |conference=International Mathematical Congress, Chicago, 1893 |book-title=Mathematical Papers Read at the International Mathematical Congress|publisher=MacMillan
}}
- {{cite journal |last=
Tan |first=Lin |year=
1996 |title=The Group of Rational Points on the Unit Circle |journal=Mathematics Magazine |volume=69 |number=3 |pages=163–171 |url=https://www.maa.org/sites/default/files/pdf/upload_library/22/Allendoerfer/1997/0025570x.di021195.02p0087x.pdf |doi=10.1080/0025570X.1996.11996421
}}
- {{cite book |last1=
Todhunter |first1=Isaac |authorlink1=Isaac Todhunter |last2=
Leathem |first2=John Gaston |date=
1901 |orig-date=1859 |title=Spherical Trigonometry |edition=Revised |publisher=MacMillan |url=https://archive.org/details/sphericaltrigono00todh/
}}
- {{cite journal |last=
Ungar |first=Abraham A. |year=
1998 |title=From Pythagoras to Einstein: The Hyperbolic Pythagorean Theorem |journal=Foundations of Physics |volume=28 |number=8 |pages=1283-1321 |doi=10.1023/A:1018874826277
}}
- {{cite journal |last=
Wildberger |first=Norman |year=
2017 |title=Rotor Coordinates and Vector Trigonometry |journal=Journal for Geometry and Graphics |volume=21 |number=1 |pages=89–106 |url=https://www.heldermann.de/JGG/JGG21/JGG211/jgg21009.htm
}}
- {{cite journal |last=
Wildberger |first=Norman |year=
2018 |title=Rotor Coordinates, Vector Trigonometry and Quadrilaterals, with Applications to the Four Bar Linkage |journal=Journal for Geometry and Graphics |volume=22 |number=2 |pages=257–268 |url=https://www.heldermann.de/JGG/JGG22/JGG222/jgg22023.htm
}}
- {{cite book|last=
Zygmund |first=Antoni |author-link=Antoni Zygmund |year=
1959 |title=Trigonometric Series |title-link=Trigonometric Series |edition=2nd |publisher=Cambridge University Press
}} [https://archive.org/details/trigonometricser0001zygm/ Volume 1], [https://archive.org/details/trigonometricser0002zygm/ Volume 2].
{{refend}}
= traditional trigonometry books, trigonometry history =
- {{cite book |last1=
Newton |first1=John |last2=Gellibrand |first2=Henry |year=
1658 |title=Trigonometria Britannica: or, The Doctrine of Triangles, In Two Books |publisher=R. & W. Leybourn |url=https://archive.org/details/trigonometria00newt
}}
- {{cite book |last=
Carnot |first=Lazare |authorlink=Lazare Carnot |year=
1803 |title=Géométrie de Position|publisher=Crapelet | url=https://archive.org/details/geometriedeposit00carn
}}
- {{cite book |last=
Casey |first=John |year=
1888 |title=A treatise on plane trigonometry |place=Dublin |publisher=Hodges, Figgis, & Co. |url=https://archive.org/details/treatiseonplanet00caseuoft/
}}
- {{cite book |last=
Hassler |first=Ferdinand Rudolph |authorlink=Ferdinand Rudolph Hassler |year=
1826 |title=Elements of Analytic Trigonometry, Plane and Spherical |publisher=F.R. Hassler |publication-place=New York |url=https://archive.org/details/elementsanalyti00hassgoog/
}}
- {{cite book |last=
Mulcahy |first=John |year=
1862 |title=Principles of Modern Geometry |publisher=Hodges, Smith & Co. |url=https://archive.org/details/principlesofmode00mulcuoft/ }}
- {{cite book |last=
Van Brummelen |first=Glen |authorlink=Glen Van Brummelen |year=
2009 |title=The Mathematics of the Heavens and the Earth |publisher=Princeton University Press
}}
- {{cite book |last=
Van Brummelen |first=Glen |year=
2012 |title=Heavenly Mathematics |publisher=Princeton University Press
}}
- {{cite book |last=
Van Brummelen |first=Glen |year=
2021 |title=The Doctrine of Triangles |publisher=Princeton University Press
}}
- https://archive.org/details/encyklomentmatik02weberich/page/n319/
= Proofs and diagrams =
- Wu, R. H. (2019). "Proof Without Words: Revisiting Two Trigonometric Figures and Two Identities from Bressieu and Fincke". Mathematics Magazine, 92(4), 302–304. https://doi.org/10.1080/0025570x.2019.1603732
= hyperbolic tangent sum, relativity =
- Kaniadakis, G. (2005). Statistical mechanics in the context of special relativity II. Phys. Rev. E, 72, 036108. https://journals.aps.org/pre/pdf/10.1103/PhysRevE.72.036108?casa_token=H9UGVAB4HR8AAAAA%3AV6v-9JRo9hIuVNiQsSa_WE-2EFmjo8zVWIEgzPUQce-N5Iap0T_AdGgVAyccXaaiyoAOoI5mvvxnXw0
"Einstein sum" or similar
- doi:10.1016/0165-0114(89)90005-5
- https://arxiv.org/pdf/physics/0510260.pdf
= tangens dimidiae, dimidii =
- Snell (1617) Eratosthenes Batauus de terrae ambitus vera quantitate https://archive.org/details/bub_gb__7rQzLUre_oC/page/n63/?q=%22tangens+dimidiae%22
- Kepler (1619) "Ephemeris ad annum 1620" https://archive.org/details/joanniskeplerias07kepl/page/n543/?q=%22tangentem+dimidiae%22
- Snell (1627) Doctrinae triangulorum canonicae https://archive.org/details/bub_gb_WlPZNQgwkscC/page/n97/?q=%22tangens+dimidiae%22
- Mercator, Nicholas (1676) Institutionum astronomicarum https://archive.org/details/bub_gb_0NgU9gEsmIwC/page/n185/?q=%22tangens+dimidiae%22
- Gregory (1726) Astronomiæ physicæ & geometricæ elementa https://archive.org/details/b30416036_0001/page/323
- Wolff (1747) Elementa matheseos universae https://archive.org/details/A077240111/page/331
- Lambert (1760) Photometria sive de mensura et gradibus luminis, colorum et umbrae https://archive.org/details/TO0E039861_TO0324_PNI-2733_000000/page/442/
- Euler (1781) "De Mensura Angulorum Solidorum" https://archive.org/details/actaacademiae02impe/page/44/
- L'Huilier (1795) Principiorum calculi differentialis et integralis expositio elementaris https://archive.org/details/TO0E040741_TO0324_PNI-2214_000000/page/n273/
- Clavius (1586) Sinus, vel semisses rectarum in circulo subtensarum: Lineae tangentes: Atque secantes. https://archive.org/details/bub_gb_sEoDoBLEeycC/page/189
- Brahe (1609) Astronomia noua aitiologetos seu physyca coelestis, tradita commentariis de motibus stellae, Martis https://archive.org/details/A011094/page/n150/
- Pitiscus (1612) Trigonometriae siue, De dimensione triangulorum libri quinque https://archive.org/details/bub_gb_nEj8z3Gnoo0C/page/n107/
- Napier (1614) Mirifici logarithmorum canonis descriptio https://archive.org/details/mirificilogarit00napi/page/51
- Magini (1614) Supplementum ephemeridum, ac tabularum secundorum mobilium https://archive.org/details/bub_gb_KvW5xeXgwX0C/page/n235/
- Galilei (1623) Il Saggiatore https://archive.org/details/A212057/page/305/
- Oughtred (1657) Trigonometria https://archive.org/details/trigonometria00ough/page/n26
- de Moivre (1730) Miscellanea analytica de seriebus et quadraturis https://archive.org/details/bub_gb_TFX1165yEc4C/page/n273/
- Newton (1739) Philosophiae naturalis principia mathematica https://archive.org/details/A298165/page/291
= halbe tangente, halb tangente =
- https://archive.org/details/vocabulairemath00muelgoog/page/n132/mode/2up?q=%22halb+Tangente%22
- https://archive.org/details/sim_annalen-der-physik_1868_134_8/page/548/mode/2up?q=%22halbe+Tangente%22
= half tangent or half-tangent =
- Henry Phillippes (1657) The Geometrical Sea-Man https://books.google.com/books?id=wo1mAAAAcAAJ&pg=PA73
- Gunter, Edmund (1673). The Works of Edmund Gunter https://archive.org/details/worksofedmundgun00gunt/page/n104/mode/2up
- Worgan (1697) A Short Treatise of the Description of the Sector. https://books.google.com/books?id=V0ius7wFlu4C&pg=PA2
- Harris (1706) Elements of Plain and Spherical Trigonometry. https://books.google.com/books?id=l8o2AAAAMAAJ&pg=RA1-PA37
- Harris (1708) Lexicon Technicum https://archive.org/details/lexicontechnicu1harr/page/n645/
- James Hodgson (1723) A System of the Mathematics https://books.google.com/books?id=3xjK9fueAGkC
- Hatton (1728) A Mathematical Manual https://archive.org/details/b30512761/page/134/mode/2up
- {{cite book| last=Kelly |first=Joshua |year=1733 |title=The Modern Navigator's Compleat Tutor |edition=2nd |publisher=W. Mount & T. Page, J. Wilcox, J. Clarke, J. Eade, and B. Macey }} https://books.google.com/books?id=xn1ZAAAAYAAJ
- {{cite book |last=Martin |first=Benjamin |year=1736 |title=The Young Trigonometer's Compleat Guide |publisher=J. Noon |url=https://archive.org/details/b30533223_0001/page/48/ }} https://books.google.com/books?id=eRsj6vraRxsC&pg=PA50
- Chambers, ed. (1750) Cyclopaedia, 6th edition, vol. 2. https://archive.org/details/gri_33125010929673/page/n721/
- James Atkinson (1759) Epitome of the art of navigation https://archive.org/details/epitomeofartofna00atki/page/121/
- Henry Wilson (1761) Navigation New Modelled https://books.google.com/books?id=rXc4uqCH9F0C
- Randall, Joseph (1766) The Young Gentleman's Geometrical Class-Fellow. publisher: J. Wilkie. https://books.google.com/books?id=JxFuVLKIh_0C
- Patrick Kelly (1796) A Practical Introduction to Spherics and Nautical Astronomy https://books.google.com/books?id=dxwUAAAAQAAJ&pg=PA139
- Webber, ed. (1801) Mathematics https://archive.org/details/mathematicscompi00webbrich/page/425
- Duffy, J., and J. Rooney. "A Displacement Analysis of Spatial Six-Link 4R-PC Mechanisms—Part 1: Analysis of RCRPRR Mechanism." (1974): 705–712.
- Duffy, J., and J. Rooney. "A foundation for a unified theory of analysis of spatial mechanisms." (1975): 1159-1164.
- Nitescu, P. N., & Manolescu, N. I. (1980). "On the structural synthesis and kinematic analysis of open-loop manipulation." Mechanism and Machine Theory, 15(4), 295–317. doi:10.1016/0094-114x(80)90023-3
- Freudenstein & Beigi 1986 http://www.internetserver.com/~beigi/ps/beigi_1986_mechanism_and_machine_theory.pdf
- Cho, Chang-Hyun, Jin-Yi Lee, Yong-Kwun Lee, and Mun-Taek Choi (2011). "Determining the passive region of the multirate wave transform on the practical implementation." International Journal of Precision Engineering and Manufacturing 12, no. 6. 975–981.
- Hertz, Roger B., and Peter C. Hughes (2013). "Variable-Geometry-Truss Manipulator." Computational Kinematics 28. 241.
- Sinha, Sasanka Sekhar, Rajeevlochana G. Chittawadigi, and Subir Kumar Saha (2018). "Inverse kinematics for general 6R manipulators in RoboAnalyzer." 1–9.
= semi-tangent =
- Foster (1654) Posthuma Fosteri the description of a ruler, p. 18 https://quod.lib.umich.edu/e/eebo/A40034.0001.001/1:4?rgn=div1;view=fulltext
- Collins (1659) The sector on a quadrant https://archive.org/details/b30334561_0001/page/n34/
- : "A Tangent of 45d or three hours through the whole Limbe for Dyalling, which may also be numbred by the Ark doubled to serve for a Projection Tangent, alias a Semi-tangent."
- Perkins (1682) The seaman's tutor https://archive.org/details/seamanstutorexpl00perk/page/10/
- Hunt (1697) A Mathematical Companion: Or the Description and Use of a New Sliding-rule https://books.google.com/books?id=GWMSAz9zVpwC&pg=PA9
- Harris (1706) Elements of Plain and Spherical Trigonometry https://books.google.com/books?id=l8o2AAAAMAAJ&pg=RA1-PA57
- Wilson (1714) Trigonometry https://books.google.com/books?id=ffxeAAAAcAAJ&pg=PA124
- Webster (1739) The Description and Use of a Complete Sett Or Case of Pocket-instruments https://books.google.com/books?id=mKlbAAAAQAAJ&pg=PA11
- Emerson (1749) The Elements of Trigonometry https://books.google.com/books?id=RZlkAAAAcAAJ&pg=PA2
- Hodgson (1753) Theory of Navigation. https://books.google.com/books?id=k5Km5cu63E4C&pg=PA300
- Bion (1758) The Construction and Principal Uses of Mathematical Instruments https://archive.org/details/constructionprin03bion/?q=%22semi-tangent%22
- : "To project the {{nobr|Semi-tangents ;}} draw Lines from the Point C, thro every Degree of the Quadrant {{nobr|A B,}} and they will divide the Diameter {{nobr|A E}} into a Line of Semi-tangents: but because the Semitangents, or Plane-Scales of a Foot in Length, run to 160 Degrees, continue out the Line {{nobr|A E,}} and draw Lines from the Point C, thro the Degrees of the Quadrant {{nobr|C A,}} cutting the said continued Portion of {{nobr|A E,}} and you will have a Line of Half-tangents to 160 Degrees, or further, if you please.
- : "Note, the Semitangent of any Arc, is but the Tangent of half that Arc, as will easily appear from its manner of Projection, and Prop. 20. Lib. 3. Eucl. where it is proved, that an Angle at the Center, is double to one at the Circumference." –Ch. VI. The Projection of the Plane-Scale, p. 34
- Ward (1765) The Posthumous Works of John Ward https://books.google.com/books?id=Je9hAAAAcAAJ&pg=PA388
- D. Fenning (1772) The Young Measurer's Complete Guide https://books.google.com/books?id=dPpeAAAAcAAJ&pg=PA318
- Emerson (1789) [1769] Projection of the Sphere. https://books.google.com/books?id=goya9BwJT-QC&pg=PA13, https://books.google.com/books?id=0PI4AAAAMAAJ&pg=PA171
- Simpson (1810) Trigonometry. https://books.google.com/books?id=8Mo2AAAAMAAJ&pg=PA94
- Kelly (1813) A Practical Introduction to Spherics and Nautical Astronomy https://books.google.com/books?id=ISfYIyIEOeIC&pg=PA16
- Ferguson (1823) Essays and Treatises. https://books.google.com/books?id=PFfd7e_dtcgC&pg=PA292
- Nicholson (1825) A Popular Course of Pure and Mixed Mathematics https://books.google.com/books?id=Wtc2AAAAMAAJ&pg=PA560
- Keith (1826) An Introduction to the Theory and Practice of Plain and Spherical Trigonometry https://books.google.com/books?id=LX0AAAAAMAAJ&pg=PA157
- Bell (1837) Solid and Spherical Geometry and Conic Sections https://books.google.com/books?id=ImoFAAAAQAAJ&pg=PA77
- Davies (1840) Elements of Descriptive Geometry https://books.google.com/books?id=R8oUAAAAYAAJ&pg=PA137
- Oxley (1848) The Gem of the Astral Sciences. https://books.google.com/books?id=2BpbAAAAcAAJ&pg=PA161
- Turnbull (1852) A New Practical System of Spherical Trigonometry. https://books.google.com/books?id=c4BaAAAAcAAJ&pg=PA5
- Hughes (1864) A Treatise on the Construction of Maps https://books.google.com/books?id=gHgDAAAAQAAJ&pg=PA74
- Smith (1884) The Theory of Deflections and of Latitudes and Departures https://books.google.com/books?id=NJnshF-9v20C&pg=RA4-PA125-IA5
- Gibbs & Wilson (1901) Vector Analysis. https://books.google.com/books?id=wUwNAAAAYAAJ
- Kellogg (1907) [1899] The transition curve or curve of adjustment https://archive.org/details/transitioncurveo00kellrich/page/26/
- Frye (1918) Civil engineers' pocket book. https://archive.org/details/civilengineerspo00frye/page/1006/
= rational parametrization =
- Silverman, Joseph H., and John Torrence Tate. Rational points on elliptic curves. Vol. 9. New York: Springer-Verlag, 1992.
- Arnolʹd, Vladimir Igorevich. Experimental mathematics. Vol. 16. American Mathematical Soc., 2015, p. 11.
- Ulbrich, Stefan, Vicente Ruiz de Angulo, Tamim Asfour, Carme Torras, and Rüdiger Dillmann. [https://upcommons.upc.edu/bitstream/handle/2117/17357/1317-Kinematic-Be-́zier-Maps.pdf "Kinematic bezier maps."] IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 42, no. 4 (2012): 1215-1230.
- O'Connor, Michael A. "Natural quadrics: Projections and intersections." IBM Journal of Research and Development 33, no. 4 (1989): 417-446. doi:10.1147/rd.334.0417
- Waterhouse, William C. "Continued fractions and Pythagorean triples." Fibonacci Quarterly 30 (1992): 144-147. https://www.mathstat.dal.ca/FQ/Scanned/30-2/waterhouse.pdf
= half-angle tangent =
- Harrington, Steven J. "A new symbolic integration system in REDUCE." The Computer Journal 22, no. 2 (1979): 127–131.
- Luck, David GC. "Properties of some wide-band phase-splitting networks." Proceedings of the IRE 37, no. 2 (1949): 147–151.
- oblique triangle solution by Leach and Beakley 1963