User:Just granpa/sandbox
::
\phantom{-}\frac{8}{2}=\phantom{-}4
:and
::
If dividend and divisor have different signs, the result is always negative.
::
\frac{\phantom{-}8}{-2}=-4
:and
::
\frac{-8}{\phantom{-}2}=-4
:and
::
\begin{array}[l]
({\color{blue} \mathbf{u} \, \lrcorner \, (\alpha \wedge \beta)}
&= {\color{red} (\mathbf{u} \, \lrcorner \, \alpha)} \wedge \beta &-
\alpha \wedge (\mathbf{u} \, \lrcorner \, \beta) \\
&= ( \mathbf{u} \cdot \alpha ) \cdot \beta &-
\alpha \cdot ( \mathbf{u} \cdot \beta ) \\
&= ( \mathbf{u} \cdot \alpha ) \cdot \beta &-
( \mathbf{u} \cdot \beta ) \cdot \alpha
\end{array}
:and
::
\begin{array}[l]
\mathbf{u} \, \lrcorner \, (\alpha \wedge \beta \wedge \gamma)
&= {\color{blue} (\mathbf{u} \, \lrcorner \, (\alpha \wedge \beta))} \wedge \gamma && +(\alpha \wedge \beta) \wedge (\mathbf{u} \, \lrcorner \, \gamma) \\
&= {\color{blue} ( \, ( \mathbf{u} \, \lrcorner \, \alpha ) \wedge \beta} &
{\color{blue} - \alpha \wedge (\mathbf{u} \, \lrcorner \, \beta) \, ) } \wedge \gamma &+
(\alpha \wedge \beta) \wedge (\mathbf{u} \, \lrcorner \, \gamma) \\
&= ( \mathbf{u} \cdot \alpha ) \cdot \beta \wedge \gamma &-
\alpha \cdot ( \mathbf{u} \cdot \beta ) \wedge \gamma &+
(\alpha \wedge \beta) \cdot (\mathbf{u} \cdot \gamma) \\
&= ( \mathbf{u} \cdot \alpha ) \cdot \beta \wedge \gamma &+
( \mathbf{u} \cdot \beta ) \cdot \gamma \wedge \alpha &+
(\mathbf{u} \cdot \gamma) \cdot (\alpha \wedge \beta)
\end{array}