User:M1ss1ontomars2k4/sandbox
From the definition of convolution, we know:
\begin{align}
(x* h)(n)& = \sum_{m=-\infty}^\infty{x[m]h[n-m]} \\
\end{align}
where is the shifted delta, . Let us substitute this in to obtain:
\sum_{m=-\infty}^\infty{x[m]\delta[(n-m)-n_0]}
Let . Then we have:
\begin{align}
(x * h)(n)& = \sum_{m=-\infty}^\infty{x[m]\delta[(n-m)-n_0]} \\
& = \sum_{m=-\infty}^\infty{x[(n-n_0)-k]\delta[k]} \\
& = \sum_{k=-\infty}^\infty{x[(n-n_0)-k]\delta[k]} \\
& = (x*\delta)(n-n_0)
\end{align}
i.e., the result of where is the shifted delta is simply the convolution of and , shifted by the same amount.