User:M1ss1ontomars2k4/sandbox

From the definition of convolution, we know:

\begin{align}

(x* h)(n)& = \sum_{m=-\infty}^\infty{x[m]h[n-m]} \\

\end{align}

where h[n] is the shifted delta, \delta[n-n_0]. Let us substitute this in to obtain:

\sum_{m=-\infty}^\infty{x[m]\delta[(n-m)-n_0]}

Let k=n-m-n_0. Then we have:

\begin{align}

(x * h)(n)& = \sum_{m=-\infty}^\infty{x[m]\delta[(n-m)-n_0]} \\

& = \sum_{m=-\infty}^\infty{x[(n-n_0)-k]\delta[k]} \\

& = \sum_{k=-\infty}^\infty{x[(n-n_0)-k]\delta[k]} \\

& = (x*\delta)(n-n_0)

\end{align}

i.e., the result of (x*h) where h[n] is the shifted delta is simply the convolution of x and \delta, shifted by the same amount.