User:MathKeduor7/sandbox/CMirror#References
File:Cylindrical mirror - Cabinet of Physics (Arppeanum) - - DSC05146.JPG
A cylindrical mirror is a curved mirror in the shape of a cylinder. It is sometimes used as a component of anamorphoscopes. Considerations about the circle inversion transformation are very useful to the understanding of its properties.
Relation to circle inversion
Circle inverting a point A in the Euclidean plane, with respect to a reference circle C with center O of radius r is a geometric transformation which obtains a point B, lying on the ray from O through A such that
Anamorphosis
...
See also
References
- Arnold 2014: Arnold, V. I. Mathematical Understanding of Nature: Essays on Amazing Physical Phenomena and Their Understanding by Mathematicians, Chapter 35 ("Inversion in Cylindrical Mirrors in the Subway"): pp 127–141. American Mathematical Society (2014) https://doi.org/10.1090/mbk/085
- Sharp et al 2011: {{cite journal | last=Sharp | first=John | last2=Nickel | first2=B. G. | last3=Hunt | first3=J. L. | title=Anamorphoscopes another look at circle inverting mirrors | journal=The Mathematical Gazette | publisher=The Mathematical Association | volume=95 | issue=532 | year=2011 | issn=00255572 | jstor=23248612 | pages=1–16 | url=http://www.jstor.org/stable/23248612 | access-date=2025-06-25}}
- Kuchel 1979: {{cite journal | last=Kuchel | first=Philip W. | title=Anamorphoscopes: a visual aid for circle inversion | journal=The Mathematical Gazette | volume=63 | issue=424 | date=1979 | issn=0025-5572 | doi=10.2307/3616013 | pages=82–89 | url=https://www.cambridge.org/core/product/identifier/S0025557200095139/type/journal_article | access-date=2025-06-25}}
- Chang et al 2025: {{cite | last=Chang | first=Pascal | last2=Sancho | first2=Sergio | last3=Tang | first3=Jingwei | last4=Gross | first4=Markus | last5=Azevedo | first5=Vinicius C. | title=LookingGlass: Generative Anamorphoses via Laplacian Pyramid Warping | date=2025 | doi=10.48550/ARXIV.2504.08902 | url=https://arxiv.org/abs/2504.08902 | access-date=2025-06-26}}
- Leys 2008: https://www.josleys.com/article_show.php?id=83
- Stillwell 1989: John Stillwell (1989) Mathematics and Its History (Third Edition), §7.2 Anamorphosis, pp. 131–132, Springer ISBN 0-387-96981-0.
- Andersen 1996: Kirsti Andersen (1996) "The mathematical treatment of anamorphoses from Piero della Francesca to Niceron", pp. 3–28 in History of Mathematics, J.W. Dauben, M. Folkerts, E. Knobloch & H. Wussing editors, ISBN 0-12-204055-4 {{MathSciNet|id=1388783}}.