User:MathsIsFun
{{userboxtop|toptext=Wikipedia:Babel}}
{{User en}}
{{User de-1}}
{{User es-1}}
{{User da-1}}
{{userboxbreak|toptext=Other}}
{{user programming-4}}
{{User:Richard0612/Userbox Archive/blue}}
{{userboxbottom}}
My Goal
My goal is to make mathematics more accessible and fun for everyone, and a big part of that is to explain mathematics using "easy language", but this requires a balancing act between precision and comprehension.
Let me explain: there is an educational concept called the spiral, which roughly means that a subject comes around again and again, always at a higher level. For example, a young person is taught that multiplication is just repeated addition. But then a year later the subject is revisited and multiplying by negatives is taught, then decimals come along ...
[[image:multiply-p2n3.gif|frame|
This is an illustration of 2 times -3. Observe that our toddler is (according to him) moving forward two paces at a time, but he does this three times in a negative direction. If he were stepping backwards two paces at a time while facing forwards, that would be -2 times 3. Have a look at http://www.mathsisfun.com/multiplying-negatives.html Multiplying by Negatives for a longer description.]]
The Website
And that is why I have developed ([http://www.mathsisfun.com Math is Fun], or "Maths is Fun" in British English), to be a place where mathematics can be explained in a more "user-friendly" manner.
And like all people who embark on explaining Science to the general public I must at times leave out details which would only confuse, but it can be very hard to know where to draw the line.
So please forgive me, fellow Wikipedians, when I over-simplify! And correct me gently, but do correct me!
Contact Details
Use this [http://www.mathsisfun.com/contact.php Contact Form]
or leave a message on the [http://www.mathisfunforum.com Math is Fun Forum]
Test Area Stats
Test Area Taylor
Test Area Scratch
r_{xy}=\frac{n\sum x_iy_i-\sum x_i\sum y_i}
{\sqrt{n\sum x_i^2-(\sum x_i)^2}~\sqrt{n\sum y_i^2-(\sum y_i)^2}}.
:
|A|
= a \cdot \begin{vmatrix} e & f \\ h & i \end{vmatrix}
- b \cdot \begin{vmatrix} d & f \\ g & i \end{vmatrix}
+ c \cdot \begin{vmatrix} d & e \\ g & h \end{vmatrix}
|A|
= a \cdot \begin{vmatrix} f & g & h \\ j & k & l \\ n & o & p \end{vmatrix}
- b \cdot \begin{vmatrix} e & g & h \\ i & k & l \\ m & o & p \end{vmatrix}
+ c \cdot \begin{vmatrix} e & f & h \\ i & j & l \\ m & n & p \end{vmatrix}
- d \cdot \begin{vmatrix} e & f & g \\ i & j & k \\ m & n & o \end{vmatrix}
Test Area Symbols
Test Area Stats
r_{xy}=\frac{\sum\limits_{i=1}^n (x_i-\bar{x})(y_i-\bar{y})}
{\sqrt{\sum\limits_{i=1}^n (x_i-\bar{x})^2 \sum\limits_{i=1}^n (y_i-\bar{y})^2}},
\begin{align}
\text{Variance: } \sigma^2 & = \frac{206^2 + 76^2 + (-224)^2 + 36^2 + (-94)^2}{5} \\
& = \frac{42,436 + 5,776+ 50,176+ 1,296 + 8,836}{5} \\
& = \frac{108,520}{5} = 21,704\\
\end{align}
Test Area Sigma
Test Area Partial Sums
Test Area Binomial
\begin{align}
\sum_{k=0}^\infty{\frac{1}{k!}} &= \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + ... \\
&= 1 + 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + ... \\
\end{align}
\begin{align}
(a+b)^3 & = \sum_{k=0}^3{3 \choose k}a^{3-k}b^{k} \\
& = {3 \choose 0}a^{3-0}b^{0} + {3 \choose 1}a^{3-1}b^{1} + {3 \choose 2}a^{3-2}b^{2} + {3 \choose 3}a^{3-3}b^{3} \\
& = 1 \cdot a^3b^0 + 3 \cdot a^2b^1 + 3 \cdot a^1b^2 + 1 \cdot a^0b^3 \\
& = a^3 + 3a^2b + 3ab^2 + b^3 \\
\end{align}
\begin{align}
(1+\tfrac{1}{n})^n & = \sum_{k=0}^n{n \choose k}1^{n-k}(\tfrac{1}{n})^{k} \\
& = \sum_{k=0}^n{n \choose k}(\tfrac{1}{n})^{k} \\
& = \sum_{k=0}^n~\frac{n!}{k!~(n-k)!} \cdot \frac{1}{n^k} \\
\end{align}
\begin{align}
(x+5)^4 & = \sum_{k=0}^4{4 \choose k}x^{4-k}5^{k} \\
& = {4 \choose 0}x^{4-0}5^{0} + {4 \choose 1}x^{4-1}5^{1} + {4 \choose 2}x^{4-2}5^{2} + {4 \choose 3}x^{4-3}5^{3} + {4 \choose 4}x^{4-4}5^{4} \\
& = 1 \cdot x^45^0 + 4 \cdot x^35^1 + 6 \cdot x^25^2 + 4 \cdot x^15^3 + 1 \cdot x^05^4 \\
& = x^4 + 4x^35 + 6x^25^2 + 4\cdot 5^3 + 5^4 \\
\end{align}
\begin{align}
\sum_{k=0}^{10-1} \tfrac{1}{2}(\tfrac{1}{2})^k & = \frac{1}{2} \left (\frac{1 - (\frac{1}{2})^{10}}{1-\frac{1}{2}}\right ) \\
& = \frac{1}{2} \left (\frac{1 - \frac{1}{1024}}{\frac{1}{2}}\right ) \\
& = 1 - \tfrac{1}{1024} \\
& = 0.9990234375 \\
\end{align}
Test Area Sigma 2
\begin{align}
0.999... & = 0.9 + 0.09 + 0.009 + ... \\
& = 0.9 \cdot 0.1^0 + 0.9 \cdot 0.1^1 + 0.9 \cdot 0.1^2 + ... \\
& = \sum_{k=0}^{\infty} 0.9 \cdot 0.1^k \\
\end{align}
Test Area Trig
My Test Area Other
\begin{align}
c &= \sqrt{(9-4)^2 + (2-8)^2 + (7-10)^2} \\
&= \sqrt{25 + 36 + 9} = \sqrt{70} = 8.37... \\
\end{align}
Ellipse a and b
Ellipse perimeter, simple formula:
A better approximation by Ramanujan is:
Ellipse r and s
Ellipse perimeter, simple formula:
A better approximation by Ramanujan is:
My Test Exponents
\begin{align}
x^\frac{m}{n} & = \sqrt[n]{x^m} \\
& = (\sqrt[n]{x})^m \\
\end{align}
\begin{align}
x^\frac{2}{3} & = \sqrt[3]{x^2} \\
& = (\sqrt[3]{x})^2 \\
\end{align}
My Test Area
for and where
Test Area 2
Image:Hexadecimal_multiplication_table.svg]]
= 0.110001000000000000000001000...
Test Area Comb Perm
Test Area Sets
f(t)=\begin{cases}
\$50&\text{if } t\leq6\\
\$80&\text{if } t>6 \text{ and } t\leq 15\\
\$80+\$5(t-15)&\text{if } t>15\end{cases}
f(x)=\begin{cases}
x^2&\text{if } x<2\\
6&\text{if } x=2\\
10-x&\text{if } x>2 \text{ and } x\leq 6 \text{ .}\end{cases}
From Set-builder notation
Examples:
- is the set ,
- is the set of all positive real numbers,
- is the set of all even natural numbers,
- is the set of rational numbers, or numbers that can be written as the ratio of two integers.
-