User:Mortice/Maths
2d
My formula:
(x+y)^n = \sum_{r=0}^n{ \frac{d^r}{dx^r} {x^n} \int^r1 dy }
...where is the r'th integral
The traditional formula:
(x+y)^n = \sum_{r=0}^n{ P_r^n x^r y^{n-r} }
...where is a Permutation
For example:
\displaystyle (x+y)^4 = x^4+4x^3y+6x^2y^2+4xy^3+y^4
Which is the same as:
(x+y)^4 = x^4*1+4x^3*y+12x^2*\frac12y^2+24x*\frac16y^3+24*\frac1{24}y^4
If you consider:
P_r^n = \frac{n!}{r!(n-r)!}
and:
\frac{d^r}{dx^r} {x^n} = \frac{n!}{(n-r)!}x^{(n-r)}
and:
\int 1 dy = \frac1{r!}y^r
...then it all logically falls out.
New notation
Lets use meaning the expression
occurs n times using different
variables for a, all summed together.
So .
For instance:
\displaystyle (x+y)^4 = x^4+4x^3y+6x^2y^2+4xy^3+y^4
Could be written as:
\displaystyle (x+y)^4 = 2[a^4]+2[4a^3b]+6a^2y^2
3d
\displaystyle (x+y+z)^3 = 3[a^3]+6[3a^2b]+6xyz
These numbers can be gleaned from the following Pascal's tetrahedron layer:
1
3 3
3 6 3
1 3 3 1
And so...
\displaystyle (x+y+z)^4 = 3[a^4]+6[4a^3b]+3[6a^2b^2]+3[a^2bc]
1
4 4
6 10 6
4 10 10 4
1 4 6 4 1