User:Mortice/Maths

2d

My formula:

(x+y)^n = \sum_{r=0}^n{ \frac{d^r}{dx^r} {x^n} \int^r1 dy }

...where \int{^r} is the r'th integral

The traditional formula:

(x+y)^n = \sum_{r=0}^n{ P_r^n x^r y^{n-r} }

...where P_r^n is a Permutation

For example:

\displaystyle (x+y)^4 = x^4+4x^3y+6x^2y^2+4xy^3+y^4

Which is the same as:

(x+y)^4 = x^4*1+4x^3*y+12x^2*\frac12y^2+24x*\frac16y^3+24*\frac1{24}y^4

If you consider:

P_r^n = \frac{n!}{r!(n-r)!}

and:

\frac{d^r}{dx^r} {x^n} = \frac{n!}{(n-r)!}x^{(n-r)}

and:

\int 1 dy = \frac1{r!}y^r

...then it all logically falls out.

New notation

Lets use \displaystyle n[a^r] meaning the expression

\displaystyle a^r occurs n times using different

variables for a, all summed together.

So \displaystyle x^2+y^2+z^2+7 = 3[a^2]+7.

For instance:

\displaystyle (x+y)^4 = x^4+4x^3y+6x^2y^2+4xy^3+y^4

Could be written as:

\displaystyle (x+y)^4 = 2[a^4]+2[4a^3b]+6a^2y^2

3d

\displaystyle (x+y+z)^3 = 3[a^3]+6[3a^2b]+6xyz

These numbers can be gleaned from the following Pascal's tetrahedron layer:

1

3 3

3 6 3

1 3 3 1

And so...

\displaystyle (x+y+z)^4 = 3[a^4]+6[4a^3b]+3[6a^2b^2]+3[a^2bc]

1

4 4

6 10 6

4 10 10 4

1 4 6 4 1