User:PAR/Work6

Pressure broadening

The presence of pertubing particles near an emitting atom will cause a broadening and possible shift of the emitted radiation.

There is two types impact and quasistatic

In each case you need the profile, represented by Cp as in C6 for Lennard-Jones potential

:\gamma = \frac{C_p}{r^p}

Assume Maxwell-Boltzmann distribution for both cases.

=Impact broadening =

From {{harv|Peach|1981|p=387}}

For impact, its always Lorentzian profile

:P(\omega)=\frac{1}{\pi}~\frac{w}{(\omega-\omega_0-d)^2+w^2)}

:w+id=\alpha_p \pi n v\left[\frac{\beta_p|C_p|}{v}\right]^{2/(p-1)}

\Gamma\left(\frac{p-3}{p-1}\right)\exp\left(\pm \frac{i\pi}{p-1}\right)

:\alpha_p=\Gamma\left(\frac{2p-3}{p-1}\right)\left(\frac{4}{\pi}\right)^{1/(p-1)}

:v=\sqrt{\frac{8kT}{\pi m}}

:\beta_p=\frac{\sqrt{\pi}\,\Gamma((p-1)/2)}{\Gamma(p/2)}

  • Linear Stark p=2

:Broadening by linear Stark effect

:\gamma=divergent

:C2=???

:Debye effects must be accounted for

  • Resonance p=3

:Broadening by ???

:\gamma=divergent

:C3=???

  • Quadratic Stark p=4

:Broadening by quadratic Stark effect

:\gamma=divergent

:C4=???

  • Van der Waals p=6

:Broadening by Van der Waals forces

:\gamma=divergent

:C6=???

=Quasistatic broadening =

From {{harv|Peach|1981|p=408}}

For quasistatic, functional form of lineshape varies. Generally its a Levy skew alpha-stable distribution (Peach, page 408)

:\Delta\omega_0 L(\omega)=\frac{1}{\pi}\Re\left[\int_0^\infty

\exp(i\beta x-(1+i\tan\theta)x^{3/p})\,dx\right]

:\beta=\Delta\omega/\Delta\omega_0\,

:\Delta\omega=\omega-\omega_0\,

:\theta=\pm 3\pi/2p\,

:\Delta\omega_0=|C_p|\left(\frac{4\pi n}{3}\Gamma(1-3/p)\cos(\theta)\right)^{p/3}

  • Linear Stark p=2

:Broadening by linear Stark effect

:P(\nu)=\frac{1}{\pi\gamma}\int_0^\infty

\cos\left(\frac{x(\nu-\nu_0)}{\gamma}\right)\exp(x^{-3/2})\,dx

:\gamma=|C_2|\pi\left(\frac{32n^2}{9}\right)^{1/3}

:C2=???

  • Resonance p=3

:P(\omega)=\frac{\gamma}{(\omega-\omega_0)^2+\gamma^2}

:\gamma=|C_3|2\pi^2n/3\,

:C_3=K\sqrt{\frac{g_u}{g_l}}~\frac{e^2f}{2m\omega}

where K is of order unity. Its just an approximation.

  • Quadratic Stark p=4

:Broadening by quadratic Stark effect

:P(\nu)=???

:\gamma=|C_4|\left(\frac{4\pi}{3}\Gamma(1/4)\cos(\theta)n\right)^{4/3}

:C_4=-\frac{e^2}{2\hbar}(\alpha_i-\alpha_j) {{harv|Peach1981|Peach|1981|loc=Eq 4.95}}

where \alpha_i and \alpha_j are the static dipole polarizabilities of the i and j energy levels.

:\theta=\pm \frac{3\pi}{8}

  • Van der Waals p=6

:Broadening by Van der Waals forces gives a Van der Waals profile. C6 is the wing term in the Lennard-Jones potential.

:P(\omega)=\sqrt{\frac{\gamma}{2\pi}}~

\frac{\exp\left(-\frac{\gamma}{2|\nu-\nu_0|}\right)}{(\nu-\nu_0)^{3/2}}

for

:(\nu-\nu_0)C_6\ge 0

0 otherwise.

:\gamma=|C_6|\frac{8\pi^3n^2}{9}\,

:\Delta \omega_0=\frac{\pi^4 n^2}{9}|C_6|\, {{harv|Peach|1981|loc=Eq 4.101}}

:C_6=-K\frac{\mu_1^2}{\hbar}(\alpha_i-\alpha_j) {{harv|Peach|1981|loc=Eq 4.100}}

where K is of order 1.