User:Plutor/Math sandbox

I use this page to create LaTeX math images for random things. See Help:Formula for documentation.

__TOC__

\sigma_0 = \langle\sigma_m\rangle

\approx

\int_0^{\varepsilon_0}

{\rm d}\varepsilon_0

\left\lbrace

2\kappa\frac{n(\varepsilon_0)-n(\infty)}{n(0)-n(\infty)}

+\alpha\left[

v_p(\varepsilon_0)-v_p^\max(\varepsilon_0)

\right]

\right\rbrace

Carrying change

2.7 miles = 1.35 hours

1 lb = 453.59237 g

penny = 2.5g = 250 g/$

= 0.551155655 lb/$ * 1.35 cal/lb*day

= 0.74406013425 cal/$*day

Value-density of a penny:

:

\begin{matrix} \mathbb{D} & = & \frac{2.5g}{\$0.01} \\

\ & = & 250\;g/\$ \\

\ & \approx & 0.551\;lb/\$

\end{matrix}

Energy used carrying a penny around for a day:

:

\begin{matrix} \mathbb{E} & = & \mathbb{D} * \frac{2.7\;mi}{2\;mph} * \frac{1\;cal}{lb * hr} \\

\ & = & \mathbb{D} * 1.35\;cal/lb \\

\ & \approx & 0.744\;cal/\$

\end{matrix}

When is [[Powerball]] worth it?

For http://plutor.org/blog/2006/02/15/when-is-powerball-worth-it/

:

\

\begin{matrix}

v_{ticket} & > & \$1.00 \\

\\

v_{ticket} & = & \frac{v_{jackpot}}{p_{jackpot}} + \frac{v_2}{p_2}+ \frac{v_3}{p_3} + \cdots + \frac{v_n}{p_n} \\

\\

\$1.00 & < & \frac{v_{jackpot}}{146,107,962.00} + \frac{\$200,000}{3,563,608.83} + \frac{\$10,000}{584,431.85} + \frac{\$100}{14,254.44} + \\

& & \frac{\$100}{11,927.18} + \frac{\$7}{290.91} + \frac{\$7}{745.45} + \frac{\$4}{126.88} + \frac{\$3}{68.96} \\

\$1.00 & < & \frac{v_{jackpot}}{146,107,962.00} + \sim 0.19711512 \\

\\

\$117,307,873 & < & v_{jackpot}

\end{matrix}

\