User:SCZenz/Sandbox

\frac{d^2\bold{x}_{a}}{dt^2}

\sigma(p(P)p(P) \to Y + X) = \int_0^1dx_1\int_0^1dx_2f_1(x_1)f_2(x_2)\sigma(q_1(x_1P)q_2(x_2P) \to Y)

(this formula only works when split in two parts on CosmicVariance :) )

x = \frac{P_{parton}}{P_{proton}}

\int_0^1x[u(x)+\bar{u}(x)+d(x)+\bar{d}(x)+g(x)+...]dx=1

\sigma_i=\frac{N_iA_i}{L}

A_i=\frac{Nevent_{rec,i}}{Nevent_{truth,i}}

Earth Alpha - {{find sources|Earth Alpha}}