User:Tomruen/Uniform honeycombs
This is a list of uniform tessellations in dimensions 2-8, constructed by vertex figures that are uniform polytopes with circumradii equal to 1.0.
Lattice refers to the vertex arrangement of a uniform tessellation/honeycomb. There are also dual lattices, which place vertices at the tessellation facet centers.
The number of vertices in the vertex figure is equal to the kissing number of the tessellation.
Circumradius 1 vertex figures
class=wikitable
!BSA | Dim | Uniform polytope (vertex figure) | Vertices | Fam | Uniform tessellation | Tessellation, packing and vertex figure | Dual tessellation and facet |
BGCOLOR="#e0f0e0" | |2D | {{CDD|node_1|3|node_1}} t0,1{3} expanded 2-simplex (hexagon) | 6 | |{{CDD|node_1|split1|branch}} honeycomb A2 lattice | |||
BGCOLOR="#e0f0e0" | |2D | {{CDD|node_1|6|node}} {6} hexagon | 6 | H~2 | {{CDD|node_1|3|node|6|node}} {3,6} H2 lattice | ||
colspan=7| | |||||||
BGCOLOR="#e0f0e0"
|co | 3D | {{CDD|node_1|3|node|3|node_1}} t0,2{3,3} expanded 3-simplex (cuboctahedron) | 12 | {{CDD|branch_10|3ab|branch}} honeycomb A3 lattice | |||
BGCOLOR="#e0f0e0"
|co | 3D | {{CDD|node|3|node_1|4|node}} t1{3,4} rectified 3-orthoplex (cuboctahedron) | 12 | {{CDD|nodes_10|split2|node|3|4|node}} h{4,3,4} D3 lattice | |||
colspan=7| | |||||||
BGCOLOR="#e0f0e0"
|spid | 4D | {{CDD|node_1|3|node|3|node|3|node_1}} t0,3{3,3,3} expanded 4-simplex | 20 | {{CDD|branch_01|3ab|nodes|split2|node}} honeycomb A4 lattice |80px | |||
tes | 4D | {{CDD|node|4|node_1|2|node_1|4|node}} (4-4 duoprism (4-cube) | 16 | C~4 | {{CDD|node|4|node|3|node_1|3|node|4|node}} t2{4,3,3,4} |rowspan=2|80px | ||
tes | 4D | {{CDD|node_1|4|node|3|node|2|node_1}} {}x{4,3} cube prism (4-cube) | 16 | F~4 | {{CDD|node|3|node_1|3|node|4|node|3|node}} t1{3,3,4,3} | ||
BGCOLOR="#e0f0e0"
|ico | 4D | {{CDD|node|3|node_1|3|node|4|node}} t1{3,3,4} rectified 4-orthoplex | 24 | {{CDD|nodea|4a|nodea|3a|branch|3a|nodea_1}} h{4,3,3,4} D4 lattice | |||
BGCOLOR="#e0f0e0"
|ico | 4D | {{CDD|node_1|3|node|4|node|3|node}} {3,4,3} (24-cell) | 24 | F~4 | {{CDD|node_1|3|node|3|node|4|node|3|node}} {3,3,4,3} F4 lattice | ||
colspan=7| | |||||||
BGCOLOR="#e0f0e0"
|scad | 5D | {{CDD|node_1|3|node|3|node|3|node|3|node_1}} t0,4{3,3,3,3} expanded 5-simplex | 30 | {{CDD|branch_01|3ab|nodes|3ab|branch}} honeycomb A5 lattice |80px | |||
squoct | 5D | {{CDD|node|4|node_1|2|node_1|3|node|4|node}} {4}x{3,4} duoprism | 24 | C~5 | {{CDD|node|4|node|3|node_1|3|node|3|node|4|node}} t2{4,3,3,3,4} | ||
BGCOLOR="#e0f0e0"
|rat | 5D | {{CDD|node|3|node_1|3|node|3|node|4|node}} t1{3,3,3,4} rectified 5-orthoplex | 40 | {{CDD|nodea_1|3a|branch|3a|nodea|3a|nodea|4a|nodea}} h{4,3,3,3,4} D5 lattice |80px | |||
colspan=7| | |||||||
BGCOLOR="#e0f0e0"
|stef | 6D | {{CDD|node_1|3|node|3|node|3|node|3|node|3|node_1}} t0,5{3,3,3,3,3} expanded 6-simplex | 42 | {{CDD|branch_01|3ab|nodes|3ab|nodes|split2|node}} honeycomb A6 lattice | |||
squahex | 6D | {{CDD|node|4|node_1|2|node_1|3|node|3|node|4|node}} {4}x{3,3,4} duoprism | 32 | {{CDD|node|4|node|3|node_1|3|node|3|node|3|node|4|node}} t2{4,3,3,3,3,4} | |||
octdip | 6D | {{CDD|node|4|node|3|node_1|2|node_1|3|node|4|node}} {3,4}x{3,4} duoprism | 36 | {{CDD|node|4|node|3|node|3|node_1|3|node|3|node|4|node}} t3{4,3,3,3,3,4} | |||
BGCOLOR="#e0f0e0"
|rag | 6D | {{CDD|node|3|node_1|3|node|3|node|3|node|4|node}} t1{3,3,3,3,4} rectified 6-orthoplex | 60 | {{CDD|nodea_1|3a|branch|3a|nodea|3a|nodea|3a|nodea|4a|nodea}} h{4,3,3,3,3,4} D6 lattice |80px | |||
trittip | 6D | {{CDD|node_1|3|node|2|node_1|3|node|2|node_1|3|node}} {3}x{3}x{3} triaprism | 27 | {{CDD|node|3|node|3|branch_10|3ab|nodes|3|node}} t2(2_22) honeycomb | |||
nodeip | 6D | {{CDD|node_1|2|node|3|node|3|node_1|3|node|3|node}} {}xt2{3,3,3,3} birectified 5-simplex prism | 40 | {{CDD|node|3|nodes_10|split2|node|3ab|nodes|3|node}} t1(2_22) honeycomb | |||
BGCOLOR="#e0f0e0"
|mo | 6D | {{CDD|nodea|3a|nodea|3a|branch_01|3a|nodea|3a|nodea}} 1_22 | 72 | {{CDD|node_1|3|node|split1|nodes|3ab|nodes|3ab|nodes}} Gosset 2_22 honeycomb E6 lattice |80px | |||
colspan=7| | |||||||
BGCOLOR="#e0f0e0" | |7D | {{CDD|node_1|3|node|3|node|3|node|3|node|3|node|3|node_1}} t0,6{3,3,3,3,3,3} expanded 7-simplex | 56 | {{CDD|branch_01|3ab|nodes|3ab|nodes|3ab|branch}} honeycomb A7 lattice | |||
7D | {{CDD|node|4|node_1|2|node_1|3|node|3|node|3|node|4|node}} {4}x{3,3,3,4} duoprism | 40 | {{CDD|node|4|node|3|node_1|3|node|3|node|3|node|3|node|4|node}} t2{4,3,3,3,3,3,4} | ||||
7D | {{CDD|node|4|node|3|node_1|2|node_1|3|node|3|node|4|node}} {3,4}x{3,3,4} duoprism | 48 | {{CDD|node|4|node|3|node|3|node_1|3|node|3|node|3|node|4|node}} t3{4,3,3,3,3,3,4} | ||||
BGCOLOR="#e0f0e0"
|rez | 7D | {{CDD|node|3|node_1|3|node|3|node|3|node|3|node|4|node}} t1{3,3,3,3,3,4} rectified 7-orthoplex | 84 | {{CDD|nodea_1|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea|4a|nodea}} h{4,3,3,3,3,3,4} D7 lattice | |||
he | 7D | {{CDD|node|3|node|3|node|3|node_1|3|node|3|node|3|node}} 0_33 trirectified 7-simplex | 70 | {{CDD|nodea|3a|nodea|3a|nodea|3a|branch_01|3a|nodea|3a|nodea|3a|nodea}} Gosset 1_33 honeycomb | |||
7D | {}x(1_31) | {{CDD|nodea|3a|nodea_1|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea}} t1(331) honeycomb | | |||||
7D | {3}x(0_31) | {{CDD|nodea|3a|nodea|3a|nodea_1|3a|branch|3a|nodea|3a|nodea|3a|nodea}} t2(331) honeycomb | | |||||
7D | {3,3}x{3}x{} | {{CDD|nodea|3a|nodea|3a|nodea|3a|branch_10|3a|nodea|3a|nodea|3a|nodea}} t3(331) honeycomb | | |||||
BGCOLOR="#e0f0e0"
|laq | 7D | {{CDD|nodea_1|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea}} 2_31 | 126 | {{CDD|nodea_1|3a|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea}} Gosset 3_31 honeycomb E7 lattice | |||
colspan=7| | |||||||
BGCOLOR="#e0f0e0" | |8D | {{CDD|node_1|3|node|3|node|3|node|3|node|3|node|3|node|3|node_1}} t0,7{3,3,3,3,3,3,3} expanded 8-simplex | 72 | {{CDD|branch_01|3ab|nodes|3ab|nodes|3ab|nodes|split2|node}} honeycomb A8 lattice | |||
8D | {{CDD|node|4|node_1|2|node_1|3|node|3|node|3|node|3|node|4|node}} {4}x{3,3,3,3,4} duoprism | 48 | {{CDD|node|4|node|3|node_1|3|node|3|node|3|node|3|node|3|node|4|node}} t2{4,3,3,3,3,3,3,4} | ||||
8D | {{CDD|node|4|node|3|node_1|2|node_1|3|node|3|node|3|node|4|node}} {3,4}x{3,3,3,4} duoprism | 60 | {{CDD|node|4|node|3|node|3|node_1|3|node|3|node|3|node|3|node|4|node}} t3{4,3,3,3,3,3,3,4} | ||||
8D | {{CDD|node|4|node|3|node|3|node_1|2|node_1|3|node|3|node|4|node}} {3,3,4}x{3,3,4} duoprism | 64 | {{CDD|node|4|node|3|node|3|node|3|node_1|3|node|3|node|3|node|4|node}} t4{4,3,3,3,3,3,3,4} | ||||
BGCOLOR="#e0f0e0"
|rek | 8D | {{CDD|node|3|node_1|3|node|3|node|3|node|3|node|3|node|4|node}} t1{3,3,3,3,3,3,4} rectified 8-orthoplex | 112 | {{CDD|nodea_1|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea|4a|nodea}} h{4,3,3,3,3,3,3,4} D8 lattice | |||
rene | 8D | {{CDD|node|3|node|3|node_1|3|node|3|node|3|node|3|node|3|node}} 0_52 birectified 8-simplex | 84 | {{CDD|nodea|3a|nodea|3a|branch_01|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}} Gosset 1_52 honeycomb | |||
roc prism | 8D | {} x 0_51 | 56 | {{CDD|nodea|3a|nodea_1|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}} t1(251) honeycomb | | |||
hocto | 8D | {{CDD|nodea_1|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}} 1_51 8-demicube | 128 | {{CDD|nodea_1|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}} Gosset 2_51 honeycomb | |||
8D | {} x (3_21) | 112 | {{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea_1|3a|nodea}} t1(521) honeycomb | | ||||
8D | {3} x (2_21) | 81 | {{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea_1|3a|nodea|3a|nodea}} t2(521) honeycomb | | ||||
8D | {3,3} x (1_21) | 48 | {{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea_1|3a|nodea|3a|nodea|3a|nodea}} t3(521) honeycomb | | ||||
8D | {3,3,3} x (0_21) | 50 | {{CDD|nodea|3a|nodea|3a|branch|3a|nodea_1|3a|nodea|3a|nodea|3a|nodea|3a|nodea}} t4(521) honeycomb | | ||||
8D | {3,3,3,3} x {3} x {} | 30 | {{CDD|nodea|3a|nodea|3a|branch_10|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}} t5(521) honeycomb | | ||||
BGCOLOR="#e0f0e0"
|fy | 8D | {{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea_1}} 4_21 polytope | 240 | {{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea_1}} Gosset 5_21 honeycomb E8 lattice |
Families =
Infinite Coxeter groups
Families of convex uniform tessellations are defined by Coxeter groups.
class="wikitable"
!height=30|n ! ! ! ! ! - ! ! ! |
1
| | | | | | | |{∞} {{CDD|node_1|infin|node}} |
2
{{CDD|node_1|split1|branch}} | {{CDD|node_1|4|node|4|node}} | | | {{CDD|node_1|6|node|3|node}} | |
3
{{CDD|branch_11|3ab|branch}} {{CDD|nodes_10|split2|node|3|4|node}} |{4,3,4} {{CDD|node_1|4|node|3|node|4|node}} | | | | | |
4
|{3[5]} {{CDD|branch_10|3ab|nodes|split2|node}} {{CDD|nodes_10|split2|node|3|node|4|node}} {{CDD|node_1|4|node|3|node|3|node|4|node}} {{CDD|nodes_10|split2|node|split1|nodes}} | {{CDD|node_1|3|node|4|node|3|node|3|node}} | | |
5
|{3[6]} {{CDD|branch_10|3ab|nodes|3ab|branch}} |h{4,33,4} {{CDD|nodes_10|split2|node|3|node|3|node|4|node}} |{4,33,4} {{CDD|node|4|node|3|node|3|node|3|node|4|node}} |q{4,33,4} {{CDD|nodes_10|split2|node|3|node|split1|nodes_10}} | | | | |
6
|{3[7]} {{CDD|branch_10|3ab|nodes|3ab|nodes|split2|node}} |h{4,34,4} {{CDD|nodes_10|split2|node|3|node|3|node|3|node|4|node}} |{4,34,4} {{CDD|node_1|4|node|3|node|3|node|3|node|3|node|4|node}} |q{4,34,4} {{CDD|nodes_10|split2|node|3|node|3|node|split1|nodes_10}} |{32,2,2} {{CDD|node_1|3|node|3|branch|3ab|nodes|3|node}} | | | |
7
|{3[8]} {{CDD|branch_10|3ab|nodes|3ab|nodes|3ab|branch}} |h{4,35,4} {{CDD|nodes_10|split2|node|3|node|3|node|3|node|3|node|4|node}} |{4,35,4} {{CDD|node_1|4|node|3|node|3|node|3|node|3|node|3|node|4|node}} |q{4,35,4} {{CDD|nodes_10|split2|node|3|node|3|node|3|node|split1|nodes_10}} |{33,3,1} {{CDD|node_1|3|node|3|node|3|branch|3|node|3|node|3|node}}
{{CDD|node|3|node|3|node|3|branch_01|3|node|3|node|3|node}} | | | |
8
|{3[9]} {{CDD|branch_10|3ab|nodes|3ab|nodes|3ab|nodes|split2|node}} |h{4,36,4} {{CDD|nodes_10|split2|node|3|node|3|node|3|node|3|node|3|node|4|node}} |{4,36,4} {{CDD|node_1|4|node|3|node|3|node|3|node|3|node|3|node|3|node|4|node}} |q{4,36,4} {{CDD|nodes_10|split2|node|3|node|3|node|3|node|3|node|split1|nodes_10}} |{35,2,1} {{CDD|node|3|node|3|branch|3|node|3|node|3|node|3|node|3|node_1}}
{{CDD|node_1|3|node|3|branch|3|node|3|node|3|node|3|node|3|node}}
{{CDD|node|3|node|3|branch_01|3|node|3|node|3|node|3|node|3|node}} | | | |
9
|{3[10]} {{CDD|branch_10|3ab|nodes|3ab|nodes|3ab|nodes|3ab|branch}} |h{4,37,4} {{CDD|nodes_10|split2|node|3|node|3|node|3|node|3|node|3|node|3|node|4|node}} |{4,37,4} {{CDD|node_1|4|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node|4|node}} |q{4,37,4} {{CDD|nodes_10|split2|node|3|node|3|node|3|node|3|node|3|node|split1|nodes_10}} |{36,2,1} {{CDD|node|3|node|3|branch|3|node|3|node|3|node|3|node|3|node|3|node_1}}
{{CDD|node_1|3|node|3|branch|3|node|3|node|3|node|3|node|3|node|3|node}}
{{CDD|nodea|3a|nodea|3a|branch_01|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}} | | | |
10
|... |... |... |... | | | | |
= Notes=
{{reflist}}
- http://books.google.com/books?id=fUm5Mwfx8rAC&printsec=frontcover&dq=Coxeter&hl=en&ei=0jjOS-yZOpKuNvi79BU&sa=X&oi=book_result&ct=result&resnum=4&ved=0CDsQ6AEwAw#v=onepage&q=lattice&f=false