User:Tomruen/Uniform honeycombs

This is a list of uniform tessellations in dimensions 2-8, constructed by vertex figures that are uniform polytopes with circumradii equal to 1.0.

Lattice refers to the vertex arrangement of a uniform tessellation/honeycomb. There are also dual lattices, which place vertices at the tessellation facet centers.

The number of vertices in the vertex figure is equal to the kissing number of the tessellation.

Circumradius 1 vertex figures

class=wikitable

!BSA

DimUniform polytope (vertex figure)VerticesFamUniform tessellationTessellation, packing and vertex figureDual tessellation and facet
BGCOLOR="#e0f0e0"|2D
{{CDD|node_1|3|node_1}}
t0,1{3}
expanded 2-simplex (hexagon)
6{\tilde{A}}_2|{{CDD|node_1|split1|branch}}
{\tilde{A}}_2 honeycomb
A2 lattice

|rowspan=2|100px100px100px

|rowspan=2|100px100px

BGCOLOR="#e0f0e0"|2D{{CDD|node_1|6|node}}
{6}
hexagon
6H~2{{CDD|node_1|3|node|6|node}}
{3,6}
H2 lattice
colspan=7| 
BGCOLOR="#e0f0e0"

|co

3D{{CDD|node_1|3|node|3|node_1}}
t0,2{3,3}
expanded 3-simplex (cuboctahedron)
12{\tilde{A}}_3{{CDD|branch_10|3ab|branch}}
{\tilde{A}}_3 honeycomb
A3 lattice

|rowspan=2|100px100px100px

|rowspan=2|100px100px

BGCOLOR="#e0f0e0"

|co

3D{{CDD|node|3|node_1|4|node}}
t1{3,4}
rectified 3-orthoplex (cuboctahedron)
12{\tilde{B}}_3{{CDD|nodes_10|split2|node|3|4|node}}
h{4,3,4}
D3 lattice
colspan=7| 
BGCOLOR="#e0f0e0"

|spid

4D{{CDD|node_1|3|node|3|node|3|node_1}}
t0,3{3,3,3}
expanded 4-simplex
20{\tilde{A}}_4{{CDD|branch_01|3ab|nodes|split2|node}}
{\tilde{A}}_4 honeycomb
A4 lattice

|80px

tes4D{{CDD|node|4|node_1|2|node_1|4|node}}
(4-4 duoprism (4-cube)
16C~4{{CDD|node|4|node|3|node_1|3|node|4|node}}
t2{4,3,3,4}

|rowspan=2|80px

tes4D{{CDD|node_1|4|node|3|node|2|node_1}}
{}x{4,3}
cube prism (4-cube)
16F~4{{CDD|node|3|node_1|3|node|4|node|3|node}}
t1{3,3,4,3}
BGCOLOR="#e0f0e0"

|ico

4D{{CDD|node|3|node_1|3|node|4|node}}
t1{3,3,4}
rectified 4-orthoplex
24{\tilde{D}}_4{{CDD|nodea|4a|nodea|3a|branch|3a|nodea_1}}
h{4,3,3,4}
D4 lattice

|rowspan=2|100px100px

|rowspan=2|100px100px

BGCOLOR="#e0f0e0"

|ico

4D{{CDD|node_1|3|node|4|node|3|node}}
{3,4,3}
(24-cell)
24F~4{{CDD|node_1|3|node|3|node|4|node|3|node}}
{3,3,4,3}
F4 lattice
colspan=7| 
BGCOLOR="#e0f0e0"

|scad

5D{{CDD|node_1|3|node|3|node|3|node|3|node_1}}
t0,4{3,3,3,3}
expanded 5-simplex
30{\tilde{A}}_5{{CDD|branch_01|3ab|nodes|3ab|branch}}
{\tilde{A}}_5 honeycomb
A5 lattice

|80px

squoct5D{{CDD|node|4|node_1|2|node_1|3|node|4|node}}
{4}x{3,4} duoprism
24C~5{{CDD|node|4|node|3|node_1|3|node|3|node|4|node}}
t2{4,3,3,3,4}
BGCOLOR="#e0f0e0"

|rat

5D{{CDD|node|3|node_1|3|node|3|node|4|node}}
t1{3,3,3,4}
rectified 5-orthoplex
40{\tilde{D}}_5{{CDD|nodea_1|3a|branch|3a|nodea|3a|nodea|4a|nodea}}
h{4,3,3,3,4}
D5 lattice

|80px

colspan=7| 
BGCOLOR="#e0f0e0"

|stef

6D{{CDD|node_1|3|node|3|node|3|node|3|node|3|node_1}}
t0,5{3,3,3,3,3}
expanded 6-simplex
42{\tilde{A}}_6{{CDD|branch_01|3ab|nodes|3ab|nodes|split2|node}}
{\tilde{A}}_6 honeycomb
A6 lattice
squahex6D{{CDD|node|4|node_1|2|node_1|3|node|3|node|4|node}}
{4}x{3,3,4} duoprism
32{\tilde{C}}_6{{CDD|node|4|node|3|node_1|3|node|3|node|3|node|4|node}}
t2{4,3,3,3,3,4}
octdip6D{{CDD|node|4|node|3|node_1|2|node_1|3|node|4|node}}
{3,4}x{3,4} duoprism
36{\tilde{C}}_6{{CDD|node|4|node|3|node|3|node_1|3|node|3|node|4|node}}
t3{4,3,3,3,3,4}
BGCOLOR="#e0f0e0"

|rag

6D{{CDD|node|3|node_1|3|node|3|node|3|node|4|node}}
t1{3,3,3,3,4}
rectified 6-orthoplex
60{\tilde{D}}_6{{CDD|nodea_1|3a|branch|3a|nodea|3a|nodea|3a|nodea|4a|nodea}}
h{4,3,3,3,3,4}
D6 lattice

|80px

trittip6D{{CDD|node_1|3|node|2|node_1|3|node|2|node_1|3|node}}
{3}x{3}x{3} triaprism
27{\tilde{E}}_6{{CDD|node|3|node|3|branch_10|3ab|nodes|3|node}}
t2(2_22) honeycomb
nodeip6D{{CDD|node_1|2|node|3|node|3|node_1|3|node|3|node}}
{}xt2{3,3,3,3}
birectified 5-simplex prism
40{\tilde{E}}_6{{CDD|node|3|nodes_10|split2|node|3ab|nodes|3|node}}
t1(2_22) honeycomb
BGCOLOR="#e0f0e0"

|mo

6D{{CDD|nodea|3a|nodea|3a|branch_01|3a|nodea|3a|nodea}}
1_22
72{\tilde{E}}_6{{CDD|node_1|3|node|split1|nodes|3ab|nodes|3ab|nodes}}
Gosset 2_22 honeycomb
E6 lattice

|80px

colspan=7| 
BGCOLOR="#e0f0e0"|7D{{CDD|node_1|3|node|3|node|3|node|3|node|3|node|3|node_1}}
t0,6{3,3,3,3,3,3}
expanded 7-simplex
56{\tilde{A}}_7{{CDD|branch_01|3ab|nodes|3ab|nodes|3ab|branch}}
{\tilde{A}}_7 honeycomb
A7 lattice
7D{{CDD|node|4|node_1|2|node_1|3|node|3|node|3|node|4|node}}
{4}x{3,3,3,4} duoprism
40{\tilde{C}}_7{{CDD|node|4|node|3|node_1|3|node|3|node|3|node|3|node|4|node}}
t2{4,3,3,3,3,3,4}
7D{{CDD|node|4|node|3|node_1|2|node_1|3|node|3|node|4|node}}
{3,4}x{3,3,4} duoprism
48{\tilde{C}}_7{{CDD|node|4|node|3|node|3|node_1|3|node|3|node|3|node|4|node}}
t3{4,3,3,3,3,3,4}
BGCOLOR="#e0f0e0"

|rez

7D{{CDD|node|3|node_1|3|node|3|node|3|node|3|node|4|node}}
t1{3,3,3,3,3,4}
rectified 7-orthoplex
84{\tilde{D}}_7{{CDD|nodea_1|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea|4a|nodea}}
h{4,3,3,3,3,3,4}
D7 lattice

|100px

he7D{{CDD|node|3|node|3|node|3|node_1|3|node|3|node|3|node}}
0_33
trirectified 7-simplex
70{\tilde{E}}_7{{CDD|nodea|3a|nodea|3a|nodea|3a|branch_01|3a|nodea|3a|nodea|3a|nodea}}
Gosset 1_33 honeycomb

|100px

7D{}x(1_31){\tilde{E}}_7{{CDD|nodea|3a|nodea_1|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea}}
t1(331) honeycomb

|

7D{3}x(0_31){\tilde{E}}_7{{CDD|nodea|3a|nodea|3a|nodea_1|3a|branch|3a|nodea|3a|nodea|3a|nodea}}
t2(331) honeycomb

|

7D{3,3}x{3}x{}{\tilde{E}}_7{{CDD|nodea|3a|nodea|3a|nodea|3a|branch_10|3a|nodea|3a|nodea|3a|nodea}}
t3(331) honeycomb

|

BGCOLOR="#e0f0e0"

|laq

7D{{CDD|nodea_1|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea}}
2_31
126{\tilde{E}}_7{{CDD|nodea_1|3a|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea}}
Gosset 3_31 honeycomb
E7 lattice

|100px

colspan=7| 
BGCOLOR="#e0f0e0"|8D{{CDD|node_1|3|node|3|node|3|node|3|node|3|node|3|node|3|node_1}}
t0,7{3,3,3,3,3,3,3}
expanded 8-simplex
72{\tilde{A}}_8{{CDD|branch_01|3ab|nodes|3ab|nodes|3ab|nodes|split2|node}}
{\tilde{A}}_8 honeycomb
A8 lattice
8D{{CDD|node|4|node_1|2|node_1|3|node|3|node|3|node|3|node|4|node}}
{4}x{3,3,3,3,4} duoprism
48{\tilde{C}}_7{{CDD|node|4|node|3|node_1|3|node|3|node|3|node|3|node|3|node|4|node}}
t2{4,3,3,3,3,3,3,4}
8D{{CDD|node|4|node|3|node_1|2|node_1|3|node|3|node|3|node|4|node}}
{3,4}x{3,3,3,4} duoprism
60{\tilde{C}}_7{{CDD|node|4|node|3|node|3|node_1|3|node|3|node|3|node|3|node|4|node}}
t3{4,3,3,3,3,3,3,4}
8D{{CDD|node|4|node|3|node|3|node_1|2|node_1|3|node|3|node|4|node}}
{3,3,4}x{3,3,4} duoprism
64{\tilde{C}}_7{{CDD|node|4|node|3|node|3|node|3|node_1|3|node|3|node|3|node|4|node}}
t4{4,3,3,3,3,3,3,4}
BGCOLOR="#e0f0e0"

|rek

8D{{CDD|node|3|node_1|3|node|3|node|3|node|3|node|3|node|4|node}}
t1{3,3,3,3,3,3,4}
rectified 8-orthoplex
112{\tilde{D}}_8 {{CDD|nodea_1|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea|4a|nodea}}
h{4,3,3,3,3,3,3,4}
D8 lattice

|120px

rene8D{{CDD|node|3|node|3|node_1|3|node|3|node|3|node|3|node|3|node}}
0_52
birectified 8-simplex
84{\tilde{E}}_8{{CDD|nodea|3a|nodea|3a|branch_01|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}
Gosset 1_52 honeycomb

|120px

roc prism8D{} x 0_5156{\tilde{E}}_8{{CDD|nodea|3a|nodea_1|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}
t1(251) honeycomb

|

hocto8D{{CDD|nodea_1|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}
1_51
8-demicube
128{\tilde{E}}_8{{CDD|nodea_1|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}
Gosset 2_51 honeycomb

|120px

8D{} x (3_21)112{\tilde{E}}_8{{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea_1|3a|nodea}}
t1(521) honeycomb

|

8D{3} x (2_21)81{\tilde{E}}_8{{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea_1|3a|nodea|3a|nodea}}
t2(521) honeycomb

|

8D{3,3} x (1_21)48{\tilde{E}}_8{{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea_1|3a|nodea|3a|nodea|3a|nodea}}
t3(521) honeycomb

|

8D{3,3,3} x (0_21)50{\tilde{E}}_8{{CDD|nodea|3a|nodea|3a|branch|3a|nodea_1|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}
t4(521) honeycomb

|

8D{3,3,3,3} x {3} x {}30{\tilde{E}}_8{{CDD|nodea|3a|nodea|3a|branch_10|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}
t5(521) honeycomb

|

BGCOLOR="#e0f0e0"

|fy

8D{{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea_1}}
4_21 polytope
240{\tilde{E}}_8{{CDD|nodea|3a|nodea|3a|branch|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea_1}}
Gosset 5_21 honeycomb
E8 lattice

|120px

Families =

Infinite Coxeter groups

Families of convex uniform tessellations are defined by Coxeter groups.

class="wikitable"

!height=30|n

!{\tilde{A}}_2+
n

!{\tilde{B}}_3+
Alternated n-cubicCoxeter, The beauty of Geometry, Wythoff's construction of uniform polytopes, Page 47, hδn
n

!{\tilde{C}}_2+
n-cubicCoxeter, The beauty of Geometry, Wythoff's construction of uniform polytopes, Page 47, δn
δn

!{\tilde{D}}_4+
Quartered n-cubicCoxeter, The beauty of Geometry, Wythoff's construction of uniform polytopes, Page 47, qδn
n

!{\tilde{E}}_6 - {\tilde{E}}_9

!{\tilde{F}}_4

!{\tilde{G}}_2
Hexagonal

!{\tilde{I}}_1
Aperigonal

1

|{∞}

{{CDD|node_1|infin|node}}

2

|{6,3}

{{CDD|node_1|split1|branch}}

|{4,4}

{{CDD|node_1|4|node|4|node}}

|{6,3}

{{CDD|node_1|6|node|3|node}}

3

|q{4,3,4}

{{CDD|branch_11|3ab|branch}}

|h{4,3,4}

{{CDD|nodes_10|split2|node|3|4|node}}

|{4,3,4}

{{CDD|node_1|4|node|3|node|4|node}}

4

|{3[5]}

{{CDD|branch_10|3ab|nodes|split2|node}}

|{4,32,4}

{{CDD|nodes_10|split2|node|3|node|4|node}}

|{4,32,4}

{{CDD|node_1|4|node|3|node|3|node|4|node}}

|q{4,32,4}

{{CDD|nodes_10|split2|node|split1|nodes}}

|{3,4,3,3}

{{CDD|node_1|3|node|4|node|3|node|3|node}}

5

|{3[6]}

{{CDD|branch_10|3ab|nodes|3ab|branch}}

|h{4,33,4}

{{CDD|nodes_10|split2|node|3|node|3|node|4|node}}

|{4,33,4}

{{CDD|node|4|node|3|node|3|node|3|node|4|node}}

|q{4,33,4}

{{CDD|nodes_10|split2|node|3|node|split1|nodes_10}}

6

|{3[7]}

{{CDD|branch_10|3ab|nodes|3ab|nodes|split2|node}}

|h{4,34,4}

{{CDD|nodes_10|split2|node|3|node|3|node|3|node|4|node}}

|{4,34,4}

{{CDD|node_1|4|node|3|node|3|node|3|node|3|node|4|node}}

|q{4,34,4}

{{CDD|nodes_10|split2|node|3|node|3|node|split1|nodes_10}}

|{32,2,2}

{{CDD|node_1|3|node|3|branch|3ab|nodes|3|node}}
E6 lattice

7

|{3[8]}

{{CDD|branch_10|3ab|nodes|3ab|nodes|3ab|branch}}

|h{4,35,4}

{{CDD|nodes_10|split2|node|3|node|3|node|3|node|3|node|4|node}}

|{4,35,4}

{{CDD|node_1|4|node|3|node|3|node|3|node|3|node|3|node|4|node}}

|q{4,35,4}

{{CDD|nodes_10|split2|node|3|node|3|node|3|node|split1|nodes_10}}

|{33,3,1}

{{CDD|node_1|3|node|3|node|3|branch|3|node|3|node|3|node}}


{31,3,3}

{{CDD|node|3|node|3|node|3|branch_01|3|node|3|node|3|node}}
E7 lattice

8

|{3[9]}

{{CDD|branch_10|3ab|nodes|3ab|nodes|3ab|nodes|split2|node}}

|h{4,36,4}

{{CDD|nodes_10|split2|node|3|node|3|node|3|node|3|node|3|node|4|node}}

|{4,36,4}

{{CDD|node_1|4|node|3|node|3|node|3|node|3|node|3|node|3|node|4|node}}

|q{4,36,4}

{{CDD|nodes_10|split2|node|3|node|3|node|3|node|3|node|split1|nodes_10}}

|{35,2,1}

{{CDD|node|3|node|3|branch|3|node|3|node|3|node|3|node|3|node_1}}
E8 lattice


{32,5,1}

{{CDD|node_1|3|node|3|branch|3|node|3|node|3|node|3|node|3|node}}


{31,5,2}

{{CDD|node|3|node|3|branch_01|3|node|3|node|3|node|3|node|3|node}}

9

|{3[10]}

{{CDD|branch_10|3ab|nodes|3ab|nodes|3ab|nodes|3ab|branch}}

|h{4,37,4}

{{CDD|nodes_10|split2|node|3|node|3|node|3|node|3|node|3|node|3|node|4|node}}

|{4,37,4}

{{CDD|node_1|4|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node|4|node}}

|q{4,37,4}

{{CDD|nodes_10|split2|node|3|node|3|node|3|node|3|node|3|node|split1|nodes_10}}

|{36,2,1}

{{CDD|node|3|node|3|branch|3|node|3|node|3|node|3|node|3|node|3|node_1}}
E9 lattice


{32,6,1}

{{CDD|node_1|3|node|3|branch|3|node|3|node|3|node|3|node|3|node|3|node}}


{31,6,2}

{{CDD|nodea|3a|nodea|3a|branch_01|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}

10

|...

|...

|...

|...

= Notes=

{{reflist}}

  • http://books.google.com/books?id=fUm5Mwfx8rAC&printsec=frontcover&dq=Coxeter&hl=en&ei=0jjOS-yZOpKuNvi79BU&sa=X&oi=book_result&ct=result&resnum=4&ved=0CDsQ6AEwAw#v=onepage&q=lattice&f=false