User:Tomruen/polyhedron database documentation

= Polyhedron Database Documentation =

History

Purpose

{{Template:XXX polyhedra db}} — A database of information about different polyhedra.

Usage

{{Uniform polyhedra db

|Template used to display the information #REQUIRED

|Short form name #REQUIRED

}}

=Display templates=

The first argument to the template tag should be the name of a second template used to display information about an individual polyhedron. Possible arguments are

;Template talk:Polyhedra smallbox2

:Displays the polyhedron in a small box, intended to be used inside a table

=Short names of Polyhedron=

The nameing system follows the names used for the polyhedron but they have been shortend.

  • T - tetrahedron or Tetra
  • O - octahedron or Octa
  • C - Cube
  • D - Dodecahedron or Dodeca
  • I - Icosahedron or Icosi
  • r - rhombi
  • s - stelated
  • g - great
  • t - truncated
  • l - small (lesser) used to avoid naming conflict
  • d - ditrigonal
  • h - hemi
  • u - uniform
  • n - snub (n is used to avoid name conflict)

So gtCO becomes great truncated CubeOctahedron.

=Properties defined=

For each polyhedron the following properties are defined.

Note: Each database template file can have slightly different data-fields, depending on what makes sense:

Here the initial T is replaced by the name of the each polyhedron

  • T-name=Tetrahedron - the name used in wikipedia for the polyhedron
  • stH-altname1=Quasitruncated hexahedron - alternate name for the polyhedron (optional)
  • stH-altname2=stellatruncated cube - second alternate name (optional)
  • T-image=tetrahedron.jpg - image of the polyhedron
  • T-Wythoff=3|3 2 - Wythoff symbol
  • T-W=1 - number used in Polyhedron Models, by Magnus Wenninger.
  • T-U=01 - Uniform indexing: U01-U80 (Tetrahedron first, Prisms at 76+)
  • T-K=06 - Kaleido indexing: K01-K80 (prisms 1-5, Tetrahedron 6+)
  • T-C=15 - Number used in Coexeter et al -
  • T-V=4 - Number of vertices
  • T-E=6 - Number of edges
  • T-F=4 - Number of faces
  • T-Fdetail=4{3} - Number{type} of faces
  • T-chi=2 - Euler charteristic
  • T-vfig=3.3.3 - Vertex figure
  • T-vfigimage=tetrahedron_vertfig.png - image of vertex figure
  • T-group=Td - Symmetry group
  • T-B=Tet - Bowers name

Example

class="wikitable"

! Code

! Result

style="vertical-align:top;"

|

{{Reg polyhedra db|Polyhedra smallbox2|T}}

{{Reg polyhedra db|Polyhedra smallbox2|T}}

How it works

Each polyhedron is included with code like

{{Reg polyhedra db|Polyhedra smallbox2|T}}

Where Reg polyhedra db is a template containg the regular polyhedron data. Polyhedra smallbox2 is a template for displaying the data and T is the name of the polyhedra, in this case Tetrahedron.

Template:Reg polyhedra db is like

{{{{{1}}}|{{{2}}}|

|T-name=Tetrahedron|T-image=tetrahedron.jpg|T-Wythoff=3|3 2|

|T-W=1|T-U=01|T-K=06|T-C=15|T-V=4|T-E=6|T-F=4|T-Fdetail=4{3}|T-chi=2|

|T-vfig=3.3.3|T-vfigimage=tetrahedron_vertfig.png|T-group=Td|

|O-name=Octahedron|O-image=octahedron.jpg|O-Wythoff=4|3 2|

...

}}

The first two parameters to this template just pass their arguments through, so this resolves to

{{Polyhedra smallbox2|T|T-name=Tetrahedron|....}}

and means that the Polyhedra smallbox2 template is called. Each variable in this template is of the form X-name where X is a short name for the polyhedron.

Template:Polyhedra smallbox2 is like

100px

{{{{{{1}}}-name}}}

V {{{{{{1}}}-V}}},E {{{{{{1}}}-E}}},F {{{{{{1}}}-F}}}={{{{{{1}}}-Fdetail}}}


?={{{{{{1}}}-chi}}}, group={{{{{{1}}}-group}}}


{{{{{{1}}}-Wythoff}}} - {{{{{{1}}}-vfig}}}


W{{{{{{1}}}-W}}}, U{{{{{{1}}}-U}}}, K{{{{{{1}}}-K}}}, C{{{{{{1}}}-C}}}


{{{{{{1}}}-altname|}}}

Occurences of {{{1}}} are replaced by the first parameter. In this case T so after substituting the variable it becomes

100px

{{{T-name}}}

V {{{T-V}}},E {{{T-E}}},F {{{T-F}}}={{{T-Fdetail}}}


?={{{T-chi}}}, group={{{T-group}}}


{{{{T-Wythoff}}} - {{{T-vfig}}}


W{{{{T-W}}}, U{{{T-U}}}, K{{{T-K}}}, C{{{T-C}}}


{{{T-altname|}}}

Finally {{{T-image}}} and {{{T-name}}} just select the other parameters from the Reg polyhedra db so this now just like an infobox template.