VAX1

{{Short description|Protein-coding gene in the species Homo sapiens}}

{{cs1 config|name-list-style=vanc}}

{{Infobox_gene}}

Ventral anterior homeobox 1 is a protein that in humans is encoded by the VAX1 gene.{{cite journal | vauthors = Hallonet M, Hollemann T, Wehr R, Jenkins NA, Copeland NG, Pieler T, Gruss P | title = Vax1 is a novel homeobox-containing gene expressed in the developing anterior ventral forebrain | journal = Development | volume = 125 | issue = 14 | pages = 2599–610 |date=Aug 1998 | doi = 10.1242/dev.125.14.2599 | pmid = 9636075 | hdl = 11858/00-001M-0000-0012-FCE1-A | hdl-access = free }}{{cite journal | vauthors = Barbieri AM, Lupo G, Bulfone A, Andreazzoli M, Mariani M, Fougerousse F, Consalez GG, Borsani G, Beckmann JS, Barsacchi G, Ballabio A, Banfi S | title = A homeobox gene, vax2, controls the patterning of the eye dorsoventral axis | journal = Proc Natl Acad Sci U S A | volume = 96 | issue = 19 | pages = 10729–34 |date=Oct 1999 | pmid = 10485894 | pmc = 17951 | doi =10.1073/pnas.96.19.10729 | doi-access = free | bibcode = 1999PNAS...9610729B }}{{cite web | title = Entrez Gene: VAX1 ventral anterior homeobox 1| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=11023}}

Function

This gene appears to influence the development in humans of the forebrain. It is also present in mice and xenopus frogs, which suggests a long evolutionary history, and in those organisms its expression is confined to the forebrain, optic and olfactory areas.{{cite journal | vauthors = Hallonet M, Hollemann T, Wehr R, Jenkins NA, Copeland NG, Pieler T, Gruss P | title = Vax1 is a novel homeobox-containing gene expressed in the developing anterior ventral forebrain | journal = Development | volume = 125 | issue = 14 | pages = 2599–610 |date=July 1998 | doi = 10.1242/dev.125.14.2599 | pmid = 9636075 | hdl = 11858/00-001M-0000-0012-FCE1-A | hdl-access = free }}

VAX1 gene is a transcription factor that has a homeodomain located in the 100-159 amino acid position and an Ala–rich region located in 216-253 amino acid position of the gene. Expression studies in mice show that it is expressed in the palate, coloboma in the visual system, and the basal telencephalon, optic stalk, and visual eye fields where it is expressed along with the Shh and Bmp4 genes.{{cite journal | vauthors = Zhao L, Saitsu H, Sun X, Shiota K, Ishibashi M | title = Sonic hedgehog is involved in formation of the ventral optic cup by limiting Bmp4 expression to the dorsal domain | journal = Mech. Dev. | volume = 127 | issue = 1–2 | pages = 62–72 | year = 2010 | pmid = 19854269 | doi = 10.1016/j.mod.2009.10.006 | hdl = 2433/120557 | s2cid = 14409164 | hdl-access = free }}{{cite journal |vauthors=Bertuzzi S, Hindges R, Mui SH, O'Leary DD, Lemke G |title=The homeodomain protein Vax1 is required for axon guidance and major tract formation in the developing forebrain |journal=Genes Dev. |volume=13 |issue=23 |pages=3092–105 |date=December 1999 |pmid=10601035 |pmc=317177 |doi= 10.1101/gad.13.23.3092}}

Clinical significance

Mice with homozygous VAX1 mutations have been reported to display craniofacial malformations including cleft palate.{{cite journal |vauthors=Hallonet M, Hollemann T, Pieler T, Gruss P |title=Vax1, a novel homeobox-containing gene, directs development of the basal forebrain and visual system |journal=Genes Dev. |volume=13 |issue=23 |pages=3106–14 |date=December 1999 |pmid=10601036 |pmc=317183 |doi= 10.1101/gad.13.23.3106}}

Genome Wide Association Studies (GWAS) reported significant associations between non-syndromic clefts and SNPs in the VAX1 gene.{{cite journal |vauthors=Mangold E, Ludwig KU, Birnbaum S, etal |title=Genome-wide association study identifies two susceptibility loci for nonsyndromic cleft lip with or without cleft palate |journal=Nat. Genet. |volume=42 |issue=1 |pages=24–6 |date=January 2010 |pmid=20023658 |doi=10.1038/ng.506 |doi-access=free }}{{cite journal |vauthors=Beaty TH, Murray JC, Marazita ML, etal |title=A genome-wide association study of cleft lip with and without cleft palate identifies risk variants near MAFB and ABCA4 |journal=Nat. Genet. |volume=42 |issue=6 |pages=525–9 |date=June 2010 |pmid=20436469 |pmc=2941216 |doi=10.1038/ng.580 }} Replication studies have confirmed these associations in different population groups{{cite journal |vauthors=Nikopensius T, Birnbaum S, Ludwig KU, etal |title=Susceptibility locus for non-syndromic cleft lip with or without cleft palate on chromosome 10q25 confers risk in Estonian patients |journal=Eur. J. Oral Sci. |volume=118 |issue=3 |pages=317–9 |date=June 2010 |pmid=20572868 |doi=10.1111/j.1600-0722.2010.00741.x }}{{cite journal |vauthors=Rojas-Martinez A, Reutter H, Chacon-Camacho O, etal |title=Genetic risk factors for nonsyndromic cleft lip with or without cleft palate in a Mesoamerican population: Evidence for IRF6 and variants at 8q24 and 10q25 |journal=Birth Defects Res. A |volume=88 |issue=7 |pages=535–7 |date=July 2010 |pmid=20564431 |doi=10.1002/bdra.20689 }}

{{Clear}}

References

{{reflist|2}}

Further reading

{{refbegin | 2}}

  • {{cite journal |vauthors=Gerhard DS, Wagner L, Feingold EA, etal |title=The Status, Quality, and Expansion of the NIH Full-Length cDNA Project: The Mammalian Gene Collection (MGC) |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 | pmc=528928 }}
  • {{cite journal |vauthors=Deloukas P, Earthrowl ME, Grafham DV, etal |title=The DNA sequence and comparative analysis of human chromosome 10 |journal=Nature |volume=429 |issue= 6990 |pages= 375–81 |year= 2004 |pmid= 15164054 |doi= 10.1038/nature02462 |bibcode=2004Natur.429..375D |doi-access= free }}
  • {{cite journal |vauthors=Ota T, Suzuki Y, Nishikawa T, etal |title=Complete sequencing and characterization of 21,243 full-length human cDNAs |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40–5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 |doi-access= free }}
  • {{cite journal |vauthors=Strausberg RL, Feingold EA, Grouse LH, etal |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 |bibcode=2002PNAS...9916899M |doi-access=free }}
  • {{cite journal | vauthors=Bonaldo MF, Lennon G, Soares MB |title=Normalization and subtraction: two approaches to facilitate gene discovery |journal=Genome Res. |volume=6 |issue= 9 |pages= 791–806 |year= 1997 |pmid= 8889548 |doi=10.1101/gr.6.9.791 |doi-access=free }}

{{refend}}