Vainshtein radius

{{Short description|Special radius in gravitational physics}}Inside the Vainshtein radius{{cite journal|title=To the problem of nonvanishing gravitation mass|last=Vainshtein|first=Arkady|journal=Physics Letters B|volume=39|page=393|date=1972|issue=3 |doi=10.1016/0370-2693(72)90147-5|bibcode=1972PhLB...39..393V}}; see also {{cite journal |title=Nonperturbative Continuity in Graviton Mass versus Perturbative Discontinuity|last=Vainshtein|arxiv=hep-th/0106001|date=2001|display-authors=etal|doi=10.1103/PhysRevD.65.044026|volume=65|journal=Physical Review D|issue=4 |page=044026 |bibcode=2002PhRvD..65d4026D}}

:r_V = l_\text{P}\left( \frac{m_\text{P}^3M}{m^4_G} \right)^\frac{1}{5}

:with Planck length l_\text{P} and Planck mass m_\text{P}

the gravitational field around a body of mass M is the same in a theory where the graviton mass m_G is zero and where it's very small because the helicity 0 degree of freedom becomes effective on distance scales r \gg r_V.{{cite book|last=Zee|first=Anthony|title=Quantum Field Theory in a Nutshell|edition=2nd|page=440}}

See also

  • {{annotated link|Massive gravity}}

References