Van der Waerden number
Van der Waerden's theorem states that for any positive integers r and k there exists a positive integer N such that if the integers {1, 2, ..., N} are colored, each with one of r different colors, then there are at least k integers in arithmetic progression all of the same color. The smallest such N is the van der Waerden number W(r, k).
Tables of Van der Waerden numbers
There are two cases in which the van der Waerden number W(r, k) is easy to compute: first, when the number of colors r is equal to 1, one has W(1, k) = k for any integer k, since one color produces only trivial colorings RRRRR...RRR (for the single color denoted R). Second, when the length k of the forced arithmetic progression is 2, one has W(r, 2) = r + 1, since one may construct a coloring that avoids arithmetic progressions of length 2 by using each color at most once, but using any color twice creates a length-2 arithmetic progression. (For example, for r = 3, the longest coloring that avoids an arithmetic progression of length 2 is RGB.) There are only seven other van der Waerden numbers that are known exactly. The table below gives exact values and bounds for values of W(r, k); values are taken from Rabung and Lotts except where otherwise noted.{{cite journal | first1=John | last1=Rabung | first2=Mark | last2=Lotts | title=Improving the use of cyclic zippers in finding lower bounds for van der Waerden numbers | year=2012 | volume=19 | issue=2 | journal=Electron. J. Combin. | doi=10.37236/2363 | mr=2928650 | url=http://www.combinatorics.org/ojs/index.php/eljc/article/view/2363| doi-access=free }}
:
class="wikitable"
! k\r ! 2 colors ! 3 colors ! 4 colors ! 5 colors ! 6 colors |
3
| style="text-align:right;"| 9 | style="text-align:right;"| 27 | style="text-align:right;"| 76 | style="text-align:right;"| >170 | style="text-align:right;"| >225 |
4
| style="text-align:right;" | 35 | style="text-align:right;"| 293 | style="text-align:right;"| >1,048 | style="text-align:right;"| >2,254 | style="text-align:right;"| >9,778 |
5
| style="text-align:right;"| 178 | style="text-align:right;"| >2,173 | style="text-align:right;"| >17,705 | style="text-align:right;"| >98,741{{ cite journal | last = Heule | first=MarijnJ | title= Avoiding triples in arithmetic progression | journal = Journal of Combinatorics | volume = 8 | year = 2017 | issue=3 | pages = 391–422 | doi=10.4310/JOC.2017.v8.n3.a1 |url=https://www.cs.cmu.edu/~mheule/publications/JOC_08_03_A01.pdf }}
| style="text-align:right;"| >98,748 |
6
| style="text-align:right;"| 1,132 | style="text-align:right;"| >11,191 | style="text-align:right;"| >157,209 {{cite arXiv |last=Monroe |first=Daniel |date=2019 |title=New Lower Bounds for van der Waerden Numbers Using Distributed Computing |class=math.CO |eprint=1603.03301}} |
7
| style="text-align:right;"| >3,703 | style="text-align:right;"| >48,811 | style="text-align:right;"| >2,284,751 |
8
| style="text-align:right;"| >11,495 | style="text-align:right;"| >238,400 | style="text-align:right;"| >12,288,155 |
9
| style="text-align:right;"| >41,265 | style="text-align:right;"| >932,745 | style="text-align:right;"| >139,847,085 |
10
| style="text-align:right;"| >103,474 | style="text-align:right;"| >4,173,724 | style="text-align:right;"| >1,189,640,578 |
11
| style="text-align:right;"| >193,941 | style="text-align:right;"| >18,603,731 | style="text-align:right;"| >3,464,368,083 |
Some lower bound colorings computed using SAT approach by Marijn J.H. Heule can be found on [https://github.com/marijnheule/vdWaerden github project page].
Van der Waerden numbers with r ≥ 2 are bounded above by
:
as proved by Gowers.{{cite journal|author-link=Timothy Gowers|first=Timothy|last=Gowers|title=A new proof of Szemerédi's theorem|journal=Geom. Funct. Anal.|volume=11|issue=3|pages=465–588|url=https://www.cs.umd.edu/~gasarch/TOPICS/vdw/sz-thm-gowers-proof.pdf|year=2001|mr=1844079|doi=10.1007/s00039-001-0332-9|s2cid=124324198 }}
For a prime number p, the 2-color van der Waerden number is bounded below by
:
as proved by Berlekamp.{{cite journal |last=Berlekamp |first=E. |title=A construction for partitions which avoid long arithmetic progressions |journal=Canadian Mathematical Bulletin |volume=11 |issue= 3|year=1968 |pages=409–414 |doi=10.4153/CMB-1968-047-7 | doi-access=free | mr=0232743}}
One sometimes also writes w(r; k1, k2, ..., kr) to mean the smallest number w such that any coloring of the integers {1, 2, ..., w} with r colors contains a progression of length ki of color i, for some i. Such numbers are called off-diagonal van der Waerden numbers. Thus W(r, k) = w(r; k, k, ..., k).
Following is a list of some known van der Waerden numbers:
Van der Waerden numbers are primitive recursive, as proved by Shelah;{{cite journal | first=Saharon | last=Shelah | title=Primitive recursive bounds for van der Waerden numbers | journal=Journal of the American Mathematical Society | volume=1 | year=1988 | pages=683–697 | issue=3 | doi=10.2307/1990952 | mr=929498| jstor=1990952 | doi-access=free }} in fact he proved that they are (at most) on the fifth level of the Grzegorczyk hierarchy.
See also
References
{{Reflist}}
Further reading
- {{cite book
| last1 = Landman
| first1 = Bruce M.
| first2=Aaron
| last2=Robertson
| title = Ramsey Theory on the Integers
| publisher = American Mathematical Society
| place = Providence, RI
| year = 2014
| edition = Second
| series = Student Mathematical Library
| volume = 73
| isbn = 978-0-8218-9867-3
| doi = 10.1090/stml/073
| mr = 3243507
}}
- {{cite journal |first1=P. R. |last1=Herwig |first2=M. J. H. |last2=Heule |first3=P. M. |last3=van Lambalgen |first4=H. |last4=van Maaren |url=http://www.combinatorics.org/Volume_14/Abstracts/v14i1r6.html |title=A New Method to Construct Lower Bounds for Van der Waerden Numbers |journal=The Electronic Journal of Combinatorics |volume=14 |issue=1 |year=2007 |doi=10.37236/925 | mr=2285810 |doi-access=free }}
External links
- {{MathWorld|title=Van der Waerden Number|urlname=vanderWaerdenNumber|author=O'Bryant, Kevin|author2=Weisstein, Eric W.|name-list-style=amp}}
- {{Cite web|last=Klarreich|first=Erica|author-link=Erica Klarreich|date=2021-12-15|title=Mathematician Hurls Structure and Disorder Into Century-Old Problem|url=https://www.quantamagazine.org/oxford-mathematician-advances-century-old-combinatorics-problem-20211215/|website=Quanta Magazine}}