Van der Waerden number

Van der Waerden's theorem states that for any positive integers r and k there exists a positive integer N such that if the integers {1, 2, ..., N} are colored, each with one of r different colors, then there are at least k integers in arithmetic progression all of the same color. The smallest such N is the van der Waerden number W(r, k).

Tables of Van der Waerden numbers

There are two cases in which the van der Waerden number W(r, k) is easy to compute: first, when the number of colors r is equal to 1, one has W(1, k) = k for any integer k, since one color produces only trivial colorings RRRRR...RRR (for the single color denoted R). Second, when the length k of the forced arithmetic progression is 2, one has W(r, 2) = r + 1, since one may construct a coloring that avoids arithmetic progressions of length 2 by using each color at most once, but using any color twice creates a length-2 arithmetic progression. (For example, for r = 3, the longest coloring that avoids an arithmetic progression of length 2 is RGB.) There are only seven other van der Waerden numbers that are known exactly. The table below gives exact values and bounds for values of W(r, k); values are taken from Rabung and Lotts except where otherwise noted.{{cite journal | first1=John | last1=Rabung | first2=Mark | last2=Lotts | title=Improving the use of cyclic zippers in finding lower bounds for van der Waerden numbers | year=2012 | volume=19 | issue=2 | journal=Electron. J. Combin. | doi=10.37236/2363 | mr=2928650 | url=http://www.combinatorics.org/ojs/index.php/eljc/article/view/2363| doi-access=free }}

:

class="wikitable"

! k\r

! 2 colors

! 3 colors

! 4 colors

! 5 colors

! 6 colors

3

| style="text-align:right;"| 9

| style="text-align:right;"| 27  

| style="text-align:right;"| 76  

| style="text-align:right;"| >170  

| style="text-align:right;"| >225  

4

| style="text-align:right;" | 35

| style="text-align:right;"| 293  

| style="text-align:right;"| >1,048  

| style="text-align:right;"| >2,254  

| style="text-align:right;"| >9,778  

5

| style="text-align:right;"| 178

| style="text-align:right;"| >2,173  

| style="text-align:right;"| >17,705  

| style="text-align:right;"| >98,741{{

cite journal

| last = Heule

| first=MarijnJ

| title= Avoiding triples in arithmetic progression

| journal = Journal of Combinatorics

| volume = 8

| year = 2017

| issue=3

| pages = 391–422

| doi=10.4310/JOC.2017.v8.n3.a1

|url=https://www.cs.cmu.edu/~mheule/publications/JOC_08_03_A01.pdf

}}

 

| style="text-align:right;"| >98,748  

6

| style="text-align:right;"| 1,132

| style="text-align:right;"| >11,191  

| style="text-align:right;"| >157,209

{{cite arXiv |last=Monroe |first=Daniel |date=2019 |title=New Lower Bounds for van der Waerden Numbers Using Distributed Computing |class=math.CO |eprint=1603.03301}}  

| style="text-align:right;"| >786,740  

| style="text-align:right;"| >1,555,549  

7

| style="text-align:right;"| >3,703  

| style="text-align:right;"| >48,811  

| style="text-align:right;"| >2,284,751  

| style="text-align:right;"| >15,993,257  

| style="text-align:right;"| >111,952,799  

8

| style="text-align:right;"| >11,495  

| style="text-align:right;"| >238,400  

| style="text-align:right;"| >12,288,155  

| style="text-align:right;"| >86,017,085  

| style="text-align:right;"| >602,119,595  

9

| style="text-align:right;"| >41,265  

| style="text-align:right;"| >932,745  

| style="text-align:right;"| >139,847,085  

| style="text-align:right;"| >978,929,595  

| style="text-align:right;"| >6,852,507,165  

10

| style="text-align:right;"| >103,474  

| style="text-align:right;"| >4,173,724  

| style="text-align:right;"| >1,189,640,578  

| style="text-align:right;"| >8,327,484,046  

| style="text-align:right;"| >58,292,388,322  

11

| style="text-align:right;"| >193,941  

| style="text-align:right;"| >18,603,731  

| style="text-align:right;"| >3,464,368,083  

| style="text-align:right;"| >38,108,048,913  

| style="text-align:right;"| >419,188,538,043  

Some lower bound colorings computed using SAT approach by Marijn J.H. Heule can be found on [https://github.com/marijnheule/vdWaerden github project page].

Van der Waerden numbers with r ≥ 2 are bounded above by

:W(r,k)\le 2^{2^{r^{2^{2^{k+9}}}}}

as proved by Gowers.{{cite journal|author-link=Timothy Gowers|first=Timothy|last=Gowers|title=A new proof of Szemerédi's theorem|journal=Geom. Funct. Anal.|volume=11|issue=3|pages=465–588|url=https://www.cs.umd.edu/~gasarch/TOPICS/vdw/sz-thm-gowers-proof.pdf|year=2001|mr=1844079|doi=10.1007/s00039-001-0332-9|s2cid=124324198 }}

For a prime number p, the 2-color van der Waerden number is bounded below by

:p\cdot2^p\le W(2,p+1),

as proved by Berlekamp.{{cite journal |last=Berlekamp |first=E. |title=A construction for partitions which avoid long arithmetic progressions |journal=Canadian Mathematical Bulletin |volume=11 |issue= 3|year=1968 |pages=409–414 |doi=10.4153/CMB-1968-047-7 | doi-access=free | mr=0232743}}

One sometimes also writes w(r; k1, k2, ..., kr) to mean the smallest number w such that any coloring of the integers {1, 2, ..., w} with r colors contains a progression of length ki of color i, for some i. Such numbers are called off-diagonal van der Waerden numbers. Thus W(r, k) = w(r; k, k, ..., k).

Following is a list of some known van der Waerden numbers:

class = "wikitable"

|+ Known van der Waerden numbers

w(r;k1, k2, …, kr)ValueReference
w(2; 3,3)9Chvátal

{{cite encyclopedia

| last = Chvátal

| first=Vašek

| chapter=Some unknown van der Waerden numbers

| title = Combinatorial Structures and Their Applications.

| pages = 31–33

| editor1-first=Richard

| editor1-last=Guy

| editor2-first = Haim

| editor2-last = Hanani

| editor3-first = Norbert

| editor3-last = Sauer

| editor4-first = Johanan

| editor4-last = Schönheim| display-editors = 3

| location = New York

| publisher = Gordon and Breach

| year = 1970

| mr = 0266891

}}

w(2; 3,4)18Chvátal
w(2; 3,5)22Chvátal
w(2; 3,6)32Chvátal
w(2; 3,7)46Chvátal
w(2; 3,8)58Beeler and O'Neil

{{

cite journal

| last1 = Beeler

| first1=Michael D.

| last2 = O'Neil

| first2 = Patrick E.

| title=Some new van der Waerden numbers

| journal = Discrete Mathematics

| volume = 28

| issue = 2

| year = 1979

| pages = 135–146

| doi=10.1016/0012-365x(79)90090-6

| mr = 0546646

| doi-access = free

}}

w(2; 3,9)77Beeler and O'Neil
w(2; 3,10)97Beeler and O'Neil
w(2; 3,11)114Landman, Robertson, and Culver

{{

cite journal

| last1 = Landman

| first1=Bruce

| last2 = Robertson

| first2 = Aaron

| last3 = Culver

| first3 = Clay

| title=Some New Exact van der Waerden Numbers

| journal = Integers

| volume = 5

| issue = 2

| year = 2005

| pages = A10

| arxiv=math/0507019

| bibcode=2005math......7019L

| mr = 2192088

| url = http://www.emis.de/journals/INTEGERS/papers/a10int2003/a10int2003.pdf

}}

w(2; 3,12)135Landman, Robertson, and Culver
w(2; 3,13)160Landman, Robertson, and Culver
w(2; 3,14)186Kouril

{{

cite thesis

| last = Kouril

| first=Michal

| title= A Backtracking Framework for Beowulf Clusters with an Extension to Multi-Cluster Computation and Sat Benchmark Problem Implementation

| degree=Ph.D.

| publisher=University of Cincinnati

| year = 2006

| url = http://rave.ohiolink.edu/etdc/view?acc_num=ucin1163607141

}}

w(2; 3,15)218Kouril
w(2; 3,16)238Kouril
w(2; 3,17)279Ahmed

{{

cite journal

| last = Ahmed

| first=Tanbir

| title= Two new van der Waerden numbers w(2;3,17) and w(2;3,18)

| journal = Integers

| volume = 10

| issue =4

| year = 2010

| pages = 369–377

| doi=10.1515/integ.2010.032

| mr = 2684128

| s2cid=124272560

}}

w(2; 3,18)312Ahmed
w(2; 3,19)349Ahmed, Kullmann, and Snevily

{{

cite journal

| last1 = Ahmed

| first1=Tanbir

| last2 = Kullmann

| first2 = Oliver

| last3 = Snevily

| first3 = Hunter

| title= On the van der Waerden numbers w(2;3,t)

| arxiv = 1102.5433

| journal = Discrete Applied Mathematics

| volume = 174

| issue = 2014

| pages = 27–51

| doi = 10.1016/j.dam.2014.05.007 | doi-access = free

| mr = 3215454

| year=2014

}}

w(2; 3,20)389Ahmed, Kullmann, and Snevily (conjectured); Kouril

{{

cite journal

| last = Kouril

| first=Michal

| title= Leveraging FPGA clusters for SAT computations

| journal = Parallel Computing: On the Road to Exascale

| year = 2015

| pages = 525–532

}}

(verified)

w(2; 4,4)35Chvátal
w(2; 4,5)55Chvátal
w(2; 4,6)73Beeler and O'Neil
w(2; 4,7)109Beeler

{{

cite journal

| last = Beeler

| first=Michael D.

| title=A new van der Waerden number

| journal = Discrete Applied Mathematics

| volume = 6

| issue = 2

| year = 1983

| pages = 207

| doi=10.1016/0166-218x(83)90073-2

| mr = 0707027

| doi-access = free

}}

w(2; 4,8)146Kouril
w(2; 4,9)309Ahmed

{{

cite journal

| last = Ahmed

| first=Tanbir

| title=On computation of exact van der Waerden numbers

| journal = Integers

| volume = 12

| year = 2012

| issue = 3

| pages = 417–425

| doi = 10.1515/integ.2011.112

| mr = 2955523

| s2cid=11811448

}}

w(2; 5,5)178Stevens and Shantaram

{{

cite journal

| last1 = Stevens

| first1=Richard S.

| last2 = Shantaram

| first2 = R.

| title= Computer-generated van der Waerden partitions

| journal = Mathematics of Computation

| volume = 32

| issue =142

| year = 1978

| pages = 635–636

| doi=10.1090/s0025-5718-1978-0491468-x

| mr = 0491468

| doi-access = free

}}

w(2; 5,6)206Kouril
w(2; 5,7)260Ahmed

{{

cite journal

| last = Ahmed

| first = Tanbir

| title= Some More Van der Waerden numbers

| journal = Journal of Integer Sequences

| volume = 16

| issue = 4

| year = 2013

| pages = 13.4.4

| mr = 3056628

}}

w(2; 6,6)1132Kouril and Paul

{{

cite journal

| last1 = Kouril

| first1=Michal

| last2 = Paul

| first2 = Jerome L.

| title= The Van der Waerden Number W(2,6) is 1132

|journal = Experimental Mathematics

| volume = 17

| issue = 1

| year = 2008

| pages = 53–61

| doi=10.1080/10586458.2008.10129025

| mr = 2410115

| s2cid=1696473

| url=http://projecteuclid.org/euclid.em/1227031896

}}

w(3; 2, 3, 3)14Brown

{{

cite journal

| last = Brown

| first=T. C.

| authorlink=Tom Brown (mathematician)

| title=Some new van der Waerden numbers (preliminary report)

| journal = Notices of the American Mathematical Society

| volume = 21

| year = 1974

| pages = A-432

}}

w(3; 2, 3, 4)21Brown
w(3; 2, 3, 5)32Brown
w(3; 2, 3, 6)40Brown
w(3; 2, 3, 7)55Landman, Robertson, and Culver
w(3; 2, 3, 8)72Kouril
w(3; 2, 3, 9)90Ahmed

{{

cite journal

| last = Ahmed

| first=Tanbir

| title=Some new van der Waerden numbers and some van der Waerden-type numbers

| journal = Integers

| volume = 9

| year = 2009

| pages = A6

| doi=10.1515/integ.2009.007

| mr = 2506138

| s2cid=122129059

}}

w(3; 2, 3, 10)108Ahmed
w(3; 2, 3, 11)129Ahmed
w(3; 2, 3, 12)150Ahmed
w(3; 2, 3, 13)171Ahmed
w(3; 2, 3, 14)202Kouril

{{

cite journal

| last = Kouril

| first=Michal

| title= Computing the van der Waerden number W(3,4)=293

| journal = Integers

| volume = 12

| year = 2012

| pages = A46

| mr = 3083419

}}

w(3; 2, 4, 4)40Brown
w(3; 2, 4, 5)71Brown
w(3; 2, 4, 6)83Landman, Robertson, and Culver
w(3; 2, 4, 7)119Kouril
w(3; 2, 4, 8)157Kouril
w(3; 2, 5, 5)180Ahmed
w(3; 2, 5, 6)246Kouril
w(3; 3, 3, 3)27Chvátal
w(3; 3, 3, 4)51Beeler and O'Neil
w(3; 3, 3, 5)80Landman, Robertson, and Culver
w(3; 3, 3, 6)107Ahmed
w(3; 3, 4, 4)89Landman, Robertson, and Culver
w(3; 4, 4, 4)293Kouril
w(4; 2, 2, 3, 3)17Brown
w(4; 2, 2, 3, 4)25Brown
w(4; 2, 2, 3, 5)43Brown
w(4; 2, 2, 3, 6)48Landman, Robertson, and Culver
w(4; 2, 2, 3, 7)65Landman, Robertson, and Culver
w(4; 2, 2, 3, 8)83Ahmed
w(4; 2, 2, 3, 9)99Ahmed
w(4; 2, 2, 3, 10)119Ahmed
w(4; 2, 2, 3, 11)141Schweitzer

{{

cite thesis

| last = Schweitzer

| first=Pascal

| title= Problems of Unknown Complexity, Graph isomorphism and Ramsey theoretic numbers

| degree=Ph.D.

| publisher=U. des Saarlandes

| year = 2009

}}

w(4; 2, 2, 3, 12)163Kouril
w(4; 2, 2, 4, 4)53Brown
w(4; 2, 2, 4, 5)75Ahmed
w(4; 2, 2, 4, 6)93Ahmed
w(4; 2, 2, 4, 7)143Kouril
w(4; 2, 3, 3, 3)40Brown
w(4; 2, 3, 3, 4)60Landman, Robertson, and Culver
w(4; 2, 3, 3, 5)86Ahmed
w(4; 2, 3, 3, 6)115Kouril
w(4; 3, 3, 3, 3)76Beeler and O'Neil
w(5; 2, 2, 2, 3, 3)20Landman, Robertson, and Culver
w(5; 2, 2, 2, 3, 4)29Ahmed
w(5; 2, 2, 2, 3, 5)44Ahmed
w(5; 2, 2, 2, 3, 6)56Ahmed
w(5; 2, 2, 2, 3, 7)72Ahmed
w(5; 2, 2, 2, 3, 8)88Ahmed
w(5; 2, 2, 2, 3, 9)107Kouril
w(5; 2, 2, 2, 4, 4)54Ahmed
w(5; 2, 2, 2, 4, 5)79Ahmed
w(5; 2, 2, 2, 4, 6)101Kouril
w(5; 2, 2, 3, 3, 3)41Landman, Robertson, and Culver
w(5; 2, 2, 3, 3, 4)63Ahmed
w(5; 2, 2, 3, 3, 5)95Kouril
w(6; 2, 2, 2, 2, 3, 3)21Ahmed
w(6; 2, 2, 2, 2, 3, 4)33Ahmed
w(6; 2, 2, 2, 2, 3, 5)50Ahmed
w(6; 2, 2, 2, 2, 3, 6)60Ahmed
w(6; 2, 2, 2, 2, 4, 4)56Ahmed
w(6; 2, 2, 2, 3, 3, 3)42Ahmed
w(7; 2, 2, 2, 2, 2, 3, 3)24Ahmed
w(7; 2, 2, 2, 2, 2, 3, 4)36Ahmed
w(7; 2, 2, 2, 2, 2, 3, 5)55Ahmed
w(7; 2, 2, 2, 2, 2, 3, 6)65Ahmed
w(7; 2, 2, 2, 2, 2, 4, 4)66Ahmed
w(7; 2, 2, 2, 2, 3, 3, 3)45Ahmed
w(8; 2, 2, 2, 2, 2, 2, 3, 3)25Ahmed
w(8; 2, 2, 2, 2, 2, 2, 3, 4)40Ahmed
w(8; 2, 2, 2, 2, 2, 2, 3, 5)61Ahmed
w(8; 2, 2, 2, 2, 2, 2, 3, 6)71Ahmed
w(8; 2, 2, 2, 2, 2, 2, 4, 4)67Ahmed
w(8; 2, 2, 2, 2, 2, 3, 3, 3)49Ahmed
w(9; 2, 2, 2, 2, 2, 2, 2, 3, 3)28Ahmed
w(9; 2, 2, 2, 2, 2, 2, 2, 3, 4)42Ahmed
w(9; 2, 2, 2, 2, 2, 2, 2, 3, 5)65Ahmed
w(9; 2, 2, 2, 2, 2, 2, 3, 3, 3)52Ahmed
w(10; 2, 2, 2, 2, 2, 2, 2, 2, 3, 3)31Ahmed
w(10; 2, 2, 2, 2, 2, 2, 2, 2, 3, 4)45Ahmed
w(10; 2, 2, 2, 2, 2, 2, 2, 2, 3, 5)70Ahmed
w(11; 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3)33Ahmed
w(11; 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4)48Ahmed
w(12; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3)35Ahmed
w(12; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4)52Ahmed
w(13; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3)37Ahmed
w(13; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4)55Ahmed
w(14; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3)39Ahmed
w(15; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3)42Ahmed
w(16; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3)44Ahmed
w(17; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3)46Ahmed
w(18; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3)48Ahmed
w(19; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3)50Ahmed
w(20; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3)51Ahmed
w(21; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3)52Karki{{Cite journal |last=Karki |first=Sikij |date=2024 |title=A New van der Waerden Number |url=https://utsc.utoronto.ca/ctl/sites/utsc.utoronto.ca.ctl/files/docs/resource-files/U_t__Mathazine_Summer_2024%20%285%29.pdf |journal=U(t)-Mathazine |issue=9 |pages=34–39}}

Van der Waerden numbers are primitive recursive, as proved by Shelah;{{cite journal | first=Saharon | last=Shelah | title=Primitive recursive bounds for van der Waerden numbers | journal=Journal of the American Mathematical Society | volume=1 | year=1988 | pages=683–697 | issue=3 | doi=10.2307/1990952 | mr=929498| jstor=1990952 | doi-access=free }} in fact he proved that they are (at most) on the fifth level \mathcal{E}^5 of the Grzegorczyk hierarchy.

See also

References

{{Reflist}}

Further reading

  • {{cite book

| last1 = Landman

| first1 = Bruce M.

| first2=Aaron

| last2=Robertson

| title = Ramsey Theory on the Integers

| publisher = American Mathematical Society

| place = Providence, RI

| year = 2014

| edition = Second

| series = Student Mathematical Library

| volume = 73

| isbn = 978-0-8218-9867-3

| doi = 10.1090/stml/073

| mr = 3243507

}}

  • {{cite journal |first1=P. R. |last1=Herwig |first2=M. J. H. |last2=Heule |first3=P. M. |last3=van Lambalgen |first4=H. |last4=van Maaren |url=http://www.combinatorics.org/Volume_14/Abstracts/v14i1r6.html |title=A New Method to Construct Lower Bounds for Van der Waerden Numbers |journal=The Electronic Journal of Combinatorics |volume=14 |issue=1 |year=2007 |doi=10.37236/925 | mr=2285810 |doi-access=free }}