Vermeil's theorem

{{short description|The scalar curvature is the only absolute invariant suitable for General Relativity}}

In differential geometry, Vermeil's theorem essentially states that the scalar curvature is the only (non-trivial) absolute invariant among those of prescribed type suitable for Albert Einstein’s theory of General Relativity. The theorem was proved by the German mathematician Hermann Vermeil in 1917.

Standard version of the theorem

The theorem states that the Ricci scalar RLet us recall that Ricci scalar R is linear in the second derivatives of the metric tensor g_{\mu\nu}, quadratic in the first derivatives and contains the inverse matrix g^{\mu\nu}, which is a rational function of the components g_{\mu\nu}. is the only scalar invariant (or absolute invariant) linear in the second derivatives of the metric tensor g_{\mu\nu}.

See also

Notes

{{reflist}}

References

{{refbegin}}

  • {{cite journal |first=H. |last=Vermeil |author-link=Hermann Vermeil |title=Notiz über das mittlere Krümmungsmaß einer n-fach ausgedehnten Riemann'schen Mannigfaltigkeit |journal=Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen |series=Mathematisch-Physikalische Klasse |year=1917 |volume=21 |pages=334–344 |url=http://www.digizeitschriften.de/dms/resolveppn/?PID=GDZPPN002504820 }}
  • {{cite book|last1=Weyl|first1=Hermann|author-link1=Hermann Weyl|title=Space, time, matter|jfm=48.1059.12|year=1922|publisher=Courier Corporation |translator-last1=Brose|translator-first1=Henry L.|translator-link=Henry Brose|isbn=0-486-60267-2}}

{{refend}}

{{DEFAULTSORT:Vermeil's theorem}}

Category:Theorems in differential geometry

Category:Invariant theory