Vigesimal
{{Short description|Base-20 numeral system}}
File:Maya.svg are an example of a base-20 numeral system.]]
{{Table Numeral Systems}}
A vigesimal ({{IPAc-en|v|ɪ|ˈ|dʒ|ɛ|s|ɪ|m|əl}} {{respell|vij|ESS|im|əl}}) or base-20 (base-score) numeral system is based on twenty (in the same way in which the decimal numeral system is based on ten). Vigesimal is derived from the Latin adjective {{wikt-lang|la|vicesimus}}, meaning 'twentieth'.
Places
In a vigesimal place system, twenty individual numerals (or digit symbols) are used, ten more than in the decimal system. One modern method of finding the extra needed symbols is to write ten as the letter A, or {{vigesimal|10}} , where the 20 means base {{num|20}}, to write nineteen as {{vigesimal|19}}, and the numbers between with the corresponding letters of the alphabet. This is similar to the common computer-science practice of writing hexadecimal numerals over 9 with the letters "A–F". Another less common method skips over the letter "I", in order to avoid confusion between I20 as eighteen and one, so that the number eighteen is written as J20, and nineteen is written as K20. The number twenty is written as {{vigesimal|20}}.
valign=top|
{|class="wikitable" style="text-align:center;" |+Comparison !Decimal!!colspan="2"|Vigesimal | Name spelled out (in English) | ||
0 | colspan="2"|0 | zero | |
1 | colspan="2"|1 | one | |
2 | colspan="2"|2 | two | |
3 | colspan="2"|3 | three | |
4 | colspan="2"|4 | four | |
5 | colspan="2"|5 | five | |
6 | colspan="2"|6 | six | |
7 | colspan="2"|7 | seven | |
8 | colspan="2"|8 | eight | |
9 | colspan="2"|9 | nine | |
10 | colspan="2"|A | ten | |
11 | colspan="2"|B | eleven | |
12 | colspan="2"|C | twelve | |
13 | colspan="2"|D | thirteen | |
14 | colspan="2"|E | fourteen | |
15 | colspan="2"|F | fifteen | |
16 | colspan="2"|G | sixteen | |
17 | colspan="2"|H | seventeen | |
18 | I | J | eighteen |
19 | J | K | nineteen |
20 | colspan="2"|10 | twenty | |
400 | colspan="2"|100 | four hundred | |
8000 | colspan="2"|1000 | eight thousand | |
160000 | colspan="2"|10000 | one hundred and sixty thousand |
|width=35|
|valign=top|
class="wikitable" style="text-align:center;"
|+ Vigesimal multiplication table |
1 || 2 || 3|| 4 || 5 || 6 || 7 || 8 || 9 || A || B || C || D || E || F || G || H || I || J || 10 |
---|
2
| 4 || 6 || 8 || A || C || E || G || I || 10 || 12 || 14 || 16 || 18 || 1A || 1C || 1E || 1G || 1I || 20 |
3
| 6 || 9 || C || F || I || 11 || 14 || 17 || 1A || 1D || 1G || 1J || 22 || 25 || 28 || 2B || 2E || 2H || 30 |
4
| 8 || C || G || 10 || 14 || 18 || 1C || 1G || 20 || 24 || 28 || 2C || 2G || 30 || 34 || 38 || 3C || 3G || 40 |
5
| A || F || 10 || 15 || 1A || 1F || 20 || 25 || 2A || 2F || 30 || 35 || 3A || 3F || 40 || 45 || 4A || 4F || 50 |
6
| C || I || 14 || 1A || 1G || 22 || 28 || 2E || 30 || 36 || 3C || 3I || 44 || 4A || 4G || 52 || 58 || 5E || 60 |
7
| E || 11 || 18 || 1F || 22 || 29 || 2G || 33 || 3A || 3H || 44 || 4B || 4I || 55 || 5C || 5J || 66 || 6D || 70 |
8
| G || 14 || 1C || 20 || 28 || 2G || 34 || 3C || 40 || 48 || 4G || 54 || 5C || 60 || 68 || 6G || 74 || 7C || 80 |
9
| I || 17 || 1G || 25 || 2E || 33 || 3C || 41 || 4A || 4J || 58 || 5H || 66 || 6F || 74 || 7D || 82 || 8B || 90 |
A
| 10 || 1A || 20 || 2A || 30 || 3A || 40 || 4A || 50 || 5A || 60 || 6A || 70 || 7A || 80 || 8A || 90 || 9A || A0 |
B
| 12 || 1D || 24 || 2F || 36 || 3H || 48 || 4J || 5A || 61 || 6C || 73 || 7E || 85 || 8G || 97 || 9I || A9 || B0 |
C
| 14 || 1G || 28 || 30 || 3C || 44 || 4G || 58 || 60 || 6C || 74 || 7G || 88 || 90 || 9C || A4 || AG || B8 || C0 |
D
| 16 || 1J || 2C || 35 || 3I || 4B || 54 || 5H || 6A || 73 || 7G || 89 || 92 || 9F || A8 || B1 || BE || C7 || D0 |
E
| 18 || 22 || 2G || 3A || 44 || 4I || 5C || 66 || 70 || 7E || 88 || 92 || 9G || AA || B4 || BI || CC || D6 || E0 |
F
| 1A || 25 || 30 || 3F || 4A || 55 || 60 || 6F || 7A || 85 || 90 || 9F || AA || B5 || C0 || CF || DA || E5 || F0 |
G
| 1C || 28 || 34 || 40 || 4G || 5C || 68 || 74 || 80 || 8G || 9C || A8 || B4 || C0 || CG || DC || E8 || F4 || G0 |
H
| 1E || 2B || 38 || 45 || 52 || 5J || 6G || 7D || 8A || 97 || A4 || B1 || BI || CF || DC || E9 || F6 || G3 || H0 |
I
| 1G || 2E || 3C || 4A || 58 || 66 || 74 || 82 || 90 || 9I || AG || BE || CC || DA || E8 || F6 || G4 || H2 || I0 |
J
| 1I || 2H || 3G || 4F || 5E || 6D || 7C || 8B || 9A || A9 || B8 || C7 || D6 || E5 || F4 || G3 || H2 || I1 || J0 |
10
| 20 || 30 || 40 || 50 || 60 || 70 || 80 || 90 || A0 || B0 || C0 || D0 || E0|| F0 || G0 || H0 || I0 || J0 || 100 |
|}
According to this notation:
:{{vigesimal|40}} is equivalent to forty in decimal = {{nowrap|(2 × 201) + (0 × 200)}}
:{{vigesimal|260}} is equivalent to two hundred and sixty in decimal = {{nowrap|(13 × 201) + (0 × 200)}}
:{{vigesimal|400}} is equivalent to four hundred in decimal = {{nowrap|(1 × 202) + (0 × 201) + (0 × 200)}}.
In the rest of this article below, numbers are expressed in decimal notation, unless specified otherwise. For example, 10 means ten, 20 means twenty. Numbers in vigesimal notation use the convention that I means eighteen and J means nineteen.
Fractions
As 20 is divisible by two and five and is adjacent to 21, the product of three and seven, thus covering the first four prime numbers, many vigesimal fractions have simple representations, whether terminating or recurring (although thirds are more complicated than in decimal, repeating two digits instead of one). In decimal, dividing by three twice (ninths) only gives one digit periods ({{sfrac|9}} = 0.1111.... for instance) because 9 is the number below ten. 21, however, the number adjacent to 20 that is divisible by 3, is not divisible by 9. Ninths in vigesimal have six-digit periods. As 20 has the same prime factors as 10 (two and five), a fraction will terminate in decimal if and only if it terminates in vigesimal.
class="wikitable"
! colspan="3" align="center" | In decimal ! colspan="3" align="center" |In vigesimal |
align="center" | Fraction
| align="center" | Prime factors | align="center" | Positional representation | align="center" | Positional representation | align="center" | Prime factors | align="center" | Fraction |
align="center" | {{sfrac|1|2}}
| align="center" | {{color|green|2}} | 0.5 | 0.A | align="center" | {{color|green|2}} | align="center" | {{sfrac|1|2}} |
align="center" | {{sfrac|1|3}}
| align="center" | {{color|blue|3}} | bgcolor=#c0c0c0 | 0.3333... = 0.{{overline|3}} | bgcolor=#c0c0c0 | 0.6D6D... = 0.{{overline|6D}} | align="center" | {{color|Magenta|3}} | align="center" | {{sfrac|1|3}} |
align="center" | {{sfrac|1|4}}
| align="center" | {{color|green|2}} | 0.25 | 0.5 | align="center" | {{color|green|2}} | align="center" | {{sfrac|1|4}} |
align="center" | {{sfrac|1|5}}
| align="center" | {{color|green|5}} | 0.2 | 0.4 | align="center" | {{color|green|5}} | align="center" | {{sfrac|1|5}} |
align="center" | {{sfrac|1|6}}
| align="center" | {{color|green|2}}, {{color|blue|3}} | bgcolor=#c0c0c0 | 0.1{{overline|6}} | bgcolor=#c0c0c0 | 0.3{{overline|6D}} | align="center" | {{color|green|2}}, {{color|Magenta|3}} | align="center" | {{sfrac|1|6}} |
align="center" | {{sfrac|1|7}}
| align="center" | {{color|red|7}} | bgcolor=#c0c0c0 | 0.{{overline|142857}} | bgcolor=#c0c0c0 | 0.{{overline|2H}} | align="center" | {{color|Magenta|7}} | align="center" | {{sfrac|1|7}} |
align="center" | {{sfrac|1|8}}
| align="center" | {{color|green|2}} | 0.125 | 0.2A | align="center" | {{color|green|2}} | align="center" | {{sfrac|1|8}} |
align="center" | {{sfrac|1|9}}
| align="center" | {{color|blue|3}} | bgcolor=#c0c0c0 | 0.{{overline|1}} | bgcolor=#c0c0c0 | 0.{{overline|248HFB}} | align="center" | {{color|Magenta|3}} | align="center" | {{sfrac|1|9}} |
align="center" | {{sfrac|1|10}}
| align="center" | {{color|green|2}}, {{color|green|5}} | 0.1 | 0.2 | align="center" | {{color|green|2}}, {{color|green|5}} | align="center" | {{sfrac|1|A}} |
align="center" | {{sfrac|1|11}}
| align="center" | {{color|Magenta|11}} | bgcolor=#c0c0c0 | 0.{{overline|09}} | bgcolor=#c0c0c0 | 0.{{overline|1G759}} | align="center" | {{color|red|B}} | align="center" | {{sfrac|1|B}} |
align="center" | {{sfrac|1|12}}
| align="center" | {{color|green|2}}, {{color|blue|3}} | bgcolor=#c0c0c0 | 0.08{{overline|3}} | bgcolor=#c0c0c0 | 0.1{{overline|D6}} | align="center" | {{color|green|2}}, {{color|Magenta|3}} | align="center" | {{sfrac|1|C}} |
align="center" | {{sfrac|1|13}}
| align="center" | {{color|red|13}} | bgcolor=#c0c0c0 | 0.{{overline|076923}} | bgcolor=#c0c0c0 | 0.{{overline|1AF7DGI94C63}} | align="center" | {{color|red|D}} | align="center" | {{sfrac|1|D}} |
align="center" | {{sfrac|1|14}}
| align="center" | {{color|green|2}}, {{color|red|7}} | bgcolor=#c0c0c0 | 0.0{{overline|714285}} | bgcolor=#c0c0c0 | 0.1{{overline|8B}} | align="center" | {{color|green|2}}, {{color|Magenta|7}} | align="center" | {{sfrac|1|E}} |
align="center" | {{sfrac|1|15}}
| align="center" | {{color|blue|3}}, {{color|green|5}} | bgcolor=#c0c0c0 | 0.0{{overline|6}} | bgcolor=#c0c0c0 | 0.1{{overline|6D}} | align="center" | {{color|Magenta|3}}, {{color|green|5}} | align="center" | {{sfrac|1|F}} |
align="center" | {{sfrac|1|16}}
| align="center" | {{color|green|2}} | 0.0625 | 0.15 | align="center" | {{color|green|2}} | align="center" | {{sfrac|1|G}} |
align="center" | {{sfrac|1|17}}
| align="center" | {{color|red|17}} | bgcolor=#c0c0c0 | 0.{{overline|0588235294117647}} | bgcolor=#c0c0c0 | 0.{{overline|13ABF5HCIG984E27}} | align="center" | {{color|red|H}} | align="center" | {{sfrac|1|H}} |
align="center" | {{sfrac|1|18}}
| align="center" | {{color|green|2}}, {{color|blue|3}} | bgcolor=#c0c0c0 | 0.0{{overline|5}} | bgcolor=#c0c0c0 | 0.1{{overline|248HFB}} | align="center" | {{color|green|2}}, {{color|Magenta|3}} | align="center" | {{sfrac|1|I}} |
align="center" | {{sfrac|1|19}}
| align="center" | {{color|red|19}} | bgcolor=#c0c0c0 | 0.{{overline|052631578947368421}} | bgcolor=#c0c0c0 | 0.{{overline|1}} | align="center" | {{color|blue|J}} | align="center" | {{sfrac|1|J}} |
align="center" | {{sfrac|1|20}}
| align="center" | {{color|green|2}}, {{color|green|5}} | 0.05 | 0.1 | align="center" | {{color|green|2}}, {{color|green|5}} | align="center" | {{sfrac|1|10}} |
Cyclic numbers
The prime factorization of twenty is 22 × 5, so it is not a perfect power. However, its squarefree part, 5, is congruent to 1 (mod 4). Thus, according to Artin's conjecture on primitive roots, vigesimal has infinitely many cyclic primes, but the fraction of primes that are cyclic is not necessarily ~37.395%. An UnrealScript program that computes the lengths of recurring periods of various fractions in a given set of bases found that, of the first 15,456 primes, ~39.344% are cyclic in vigesimal.
Irrational numbers
class="wikitable"
! Algebraic irrational numbers ! In decimal ! In vigesimal |
align="center" | Square root of 2 (the length of the diagonal of a unit square)
| 1.41421356237309... | 1.85DE37JGF09H6... |
align="center" | Square root of 3 (the length of the diagonal of a unit cube)
| 1.73205080756887... | 1.ECG82BDDF5617... |
align="center" | Square root of 5 (the length of the diagonal of a 1 × 2 rectangle)
| 2.2360679774997... | 2.4E8AHAB3JHGIB... |
align="center" | {{mvar|φ}} (phi, the golden ratio = {{sfrac|1+{{radical|5}}|2}})
| 1.6180339887498... | 1.C7458F5BJII95... |
Transcendental irrational numbers
! In decimal ! In vigesimal |
---|
align="center" | {{pi}} (pi, the ratio of circumference to diameter)
| 3.14159265358979... | 3.2GCEG9GBHJ9D2... |
align="center" | {{mvar|e}} (the base of the natural logarithm)
| 2.7182818284590452... | 2.E7651H08B0C95... |
align="center" | {{mvar|γ}} (the limiting difference between the harmonic series and the natural logarithm)
| 0.5772156649015328606... | 0.BAHEA2B19BDIBI... |
Use
=Quinary-vigesimal=
Many cultures that use a vigesimal system count in fives to twenty, then count twenties similarly. Such a system is referred to as quinary-vigesimal by linguists. Examples include Greenlandic, Iñupiaq, Kaktovik, Maya, Nunivak Cupʼig, and Yupʼik numerals.{{cite journal |first=Alois Richard |last=Nykl |date=September 1926 |title=The Quinary-Vigesimal System of Counting in Europe, Asia, and America |pages=165–173 |journal=Language |volume=2 |issue=3 |url=https://books.google.com/books?id=1GwUAAAAIAAJ&q=Nykl&pg=RA1-PA165 |quote-page=165|quote=A student of the American Indian languages is naturally led to investigate the wide-spread use of the quinary-vigesimal system of counting which he meets in the whole territory from Alaska along the Pacific Coast to the Orinoco and the Amazon.|doi=10.2307/408742 |oclc=50709582 |jstor=408742 |via=Google Books|url-access=subscription }}{{cite book |first=Walter Crosby |last=Eells |chapter=Number Systems of the North American Indians |editor-first1=Marlow |editor-last1=Anderson |editor-first2=Victor |editor-last2=Katz |editor-first3=Robin |editor-last3=Wilson |date=October 14, 2004 |title=Sherlock Holmes in Babylon: And Other Tales of Mathematical History |page=89 |publisher=Mathematical Association of America |isbn=978-0-88385-546-1 |quote=Quinary-vigesimal. This is most frequent. The Greenland Eskimo says 'other hand two' for 7, 'first foot two' for 12, 'other foot two' for 17, and similar combinations to 20, 'man ended.' The Unalit is also quinary to twenty, which is 'man completed.' ... |chapter-url=https://books.google.com/books?id=BKRE5AjRM3AC&pg=PA89 |via=Google Books}}{{sfn|Chrisomalis|2010|loc=[https://books.google.com/books?id=ux--OWgWvBQC&pg=PA200 p. 200:] "The early origin of bar-and-dot numeration alongside the Middle Formative Mesoamerican scripts, the quinary-vigesimal structure of the system, and the general increase in the frequency and complexity of numeral expressions over time all point to its indigenous development."}}
=Africa=
Vigesimal systems are common in Africa, for example in Yoruba.{{cite journal | last=Zaslavsky |first=Claudia |author-link=Claudia Zaslavsky | title=Mathematics of the Yoruba People and of Their Neighbors in Southern Nigeria| journal= The Two-Year College Mathematics Journal| volume= 1 | issue=2 | pages=76–99 | year=1970|doi=10.2307/3027363 | jstor=3027363| s2cid= 163816234}} While the Yoruba number system may be regarded as a vigesimal system, it is complex.{{Explain|date=March 2021}}
=Americas=
- Probably the best-known instance of the use of the vigesimal system in the Americas is in Lincoln's Gettysburg address: "Four score and seven years ago ..." (see below).
- Twenty is a base in the Maya and Aztec number systems. The Maya use the following names for the powers of twenty: {{lang|myn|kal}} (20), {{lang|myn|bak}} (202 = 400), {{lang|myn|pic}} (203 = 8,000), {{lang|myn|calab}} (204 = 160,000), {{lang|myn|kinchil}} (205 = 3,200,000) and {{lang|myn|alau}} (206 = 64,000,000). See Maya numerals and Maya calendar, Nahuatl language.
- The Inuit-Yupik-Unangan languages have base-20 number systems. In 1994, Inuit students in Kaktovik, Alaska, came up with the base-20 Kaktovik numerals to better represent their language. Before this invention led to a revival, the Inuit numerals had been falling out of use.{{cite journal |last=Bartley |first=Wm. Clark |date=January–February 1997 |title=Making the Old Way Count |url=http://www.ankn.uaf.edu/sop/SOPv2i1.pdf |journal=Sharing Our Pathways |volume=2 |issue=1 |pages=12–13 |access-date=February 27, 2017}} The Kaktovik numerals are:
class=wikitable style="text-align: center;" | |||||||||||||||||||
style="vertical-align: bottom;"
|{{Kaktovik digit|0|x32px}} |{{Kaktovik digit|1|x32px}} |{{Kaktovik digit|2|x32px}} |{{Kaktovik digit|3|x32px}} |{{Kaktovik digit|4|x32px}} |{{Kaktovik digit|5|x32px}} |{{Kaktovik digit|6|x32px}} |{{Kaktovik digit|7|x32px}} |{{Kaktovik digit|8|x32px}} |{{Kaktovik digit|9|x32px}} |{{Kaktovik digit|10|x32px}} |{{Kaktovik digit|11|x32px}} |{{Kaktovik digit|12|x32px}} |{{Kaktovik digit|13|x32px}} |{{Kaktovik digit|14|x32px}} |{{Kaktovik digit|15|x32px}} |{{Kaktovik digit|16|x32px}} |{{Kaktovik digit|17|x32px}} |{{Kaktovik digit|18|x32px}} |{{Kaktovik digit|19|x32px}} | |||||||||||||||||||
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
=Asia=
- Dzongkha, the national language of Bhutan, has a full vigesimal system, with numerals for the powers of 20, 400, 8,000 and 160,000.
- Atong, a language spoken in the South Garo Hills of Meghalaya state, Northeast India, and adjacent areas in Bangladesh, has a full vigesimal system that is nowadays considered archaic.{{cite book |last=van Breugel |first=Seino |title=A grammar of Atong |publisher=Brill |chapter=11}}
- In Santali, a Munda language of India, "fifty" is expressed by the phrase bār isī gäl, literally "two twenty ten."{{cite book |last=Gvozdanović |first=Jadranka |title=Numeral Types and Changes Worldwide |year=1999 |page=223}} Likewise, in Didei, another Munda language spoken in India, complex numerals are decimal to 19 and decimal-vigesimal to 399.Chatterjee, Suhas. 1963. On Didei nouns, pronouns, numerals, and demonstratives. Chicago: mimeo., 1963. (cf. [http://www.ling.hawaii.edu/austroasiatic/AA/Munda/BIBLIO/biblio.authors Munda Bibliography] at the University of Hawaii Department of Linguistics)
- The Burushaski number system is base-20. For example, 20 altar, 40 alto-altar (2 times 20), 60 iski-altar (3 times 20) etc.
- In East Asia, the Ainu language also uses a counting system that is based around the number 20. "{{lang|ain|hotnep}}" is 20, "{{lang|ain|wanpe etu hotnep}}" (ten more until two twenties) is 30, "{{lang|ain|tu hotnep}}" (two twenties) is 40, "{{lang|ain|ashikne hotnep}}" (five twenties) is 100. Subtraction is also heavily used, e.g. "{{lang|ain|shinepesanpe}}" (one more until ten) is 9.{{citation needed|date=January 2019}}
- The Chukchi language has a vigesimal numeral system.{{cite journal |last=Comrie |first=Bernard |url=https://mpi-lingweb.shh.mpg.de/numeral/TypNumCuhk_11ho.pdf |title=Typology of numeral systems. Numeral types and changes worldwide. |journal=Trends in Linguistics |series=Studies and monographs |volume=118 |year=2011 |archive-url=https://web.archive.org/web/20210622052221/https://mpi-lingweb.shh.mpg.de/numeral/TypNumCuhk_11ho.pdf |archive-date=2021-06-22}}
=Oceania=
There is some evidence of base-20 usage in the Māori language of New Zealand with the suffix hoko- (i.e. hokowhitu, hokotahi).{{citation needed|date=May 2025}}
=Caucasus=
- Twenty ({{lang|ka-Latn|otsi}}, {{lang|ka|ოცი}}) is used as a base number in Georgian for numbers 30 to 99. For example, 40 ({{lang|ka-Latn|ormotsi}}, {{lang|ka|ორმოცი}}) literally means two-times-twenty, whereas 80 ({{lang|ka-Latn|otkhmotsi}}, {{lang|ka|ოთხმოცი}}), means four-times-twenty. On the other hand, 31 ({{lang|ka-Latn|otsdatertmeti}}, {{lang|ka|ოცდათერთმეტი}}) literally means, twenty-and-eleven. 67 ({{lang|ka-Latn|samotsdashvidi}}, {{lang|ka|სამოცდაშვიდი}}) is said as, "three-twenty-and-seven".
- Twenty ({{lang|ce|tq’a, ткъа, ტყა}}) is used as a base number in the Nakh languages (Chechen, Ingush, and Batsbi).
=Europe=
In several European languages like French and Danish, 20 is used as a base, at least with respect to the linguistic structure of the names of certain numbers (though a thoroughgoing consistent vigesimal system, based on the powers 20, 400, 8000 etc., is not generally used).
- Twenty ({{lang|fr|vingt}}) is used as a base number in the French names of numbers from 70 to 99, except in the French of Belgium, Switzerland, the Democratic Republic of the Congo, Rwanda, the Aosta Valley and the Channel Islands. For example, {{lang|fr|quatre-vingts}}, the French word for "80", literally means "four-twenties"; soixante-dix, the word for "70", is literally "sixty-ten"; {{lang|fr|soixante-quinze}} ("75") is literally "sixty-fifteen"; {{lang|fr|quatre-vingt-sept}} ("87") is literally "four-twenties-seven"; {{lang|fr|quatre-vingt-dix}} ("90") is literally "four-twenties-ten"; and {{lang|fr|quatre-vingt-seize}} ("96") is literally "four-twenties-sixteen". However, in the French of Belgium, Switzerland, the Democratic Republic of the Congo, Rwanda, the Aosta Valley, and the Channel Islands, the numbers 70 and 90 generally have the names {{lang|fr|septante}} and {{lang|fr|nonante}}. Therefore, the year 1996 is {{lang|fr|mille neuf cent quatre-vingt-seize}} in Parisian French, but it is {{lang|fr|mille neuf cent nonante-six}} in Belgian French. In Switzerland, "80" can be {{lang|fr|quatre-vingts}} (Geneva, Neuchâtel, Jura) or {{lang|fr|huitante}} (Vaud, Valais, Fribourg).
- Twenty ({{lang|da|tyve}}) is used as a base number in the Danish names of tens from 50 to 90. For example, {{lang|da|tres}} (short for {{lang|da|tresindstyve}}) means 3 times 20, i.e. 60. However, Danish numerals are not vigesimal since it is only the names of some of the tens that are etymologically formed in a vigesimal way. In contrast with e.g. French {{lang|fr|quatre-vingt-seize}}, the units only go from zero to nine between each ten which is a defining trait of a decimal system. For details, see Danish numerals.
- Twenty ({{lang|br|ugent}}) is used as a base number in the Breton names of numbers from 40 to 49 and from 60 to 99. For example, {{lang|br|daou-ugent}} means 2 times 20, i.e. 40, and {{lang|br|triwec'h ha pevar-ugent}} (literally "three-six and four-twenty") means 3×6 + 4×20, i.e. 98. However, 30 is {{lang|br|tregont}} and not *{{lang|br|dek ha ugent}} ("ten and twenty"), and 50 is {{lang|br|hanter-kant}} ("half-hundred").
- Twenty ({{lang|cy|ugain}}) is used as a base number in Welsh for numbers from 20 to 99 (e.g. 50 is {{lang|cy|deg a deugain}}, "ten and twoscore"), although since the 1940s a decimal counting system is often used for cardinal numbers. However, the vigesimal system exclusively is used for ordinal numbers, and is still required in telling the time, money, and with weights and measures. {{lang|cy|Deugain}} means "two twenties" i.e. 40, {{lang|cy|trigain}} means 'three twenties' i.e. 60, etc. {{lang|cy|dau ar bymtheg a deugain}} means 57 (two on fifteen and forty). As with Breton, 50 can also be expressed as {{lang|cy|hanner cant}} ("half hundred"). Prior to its withdrawal from circulation, {{lang|cy|papur chweugain}} (note of sixscore) was the nickname for the ten-shilling (120 pence) note, as 120 (old) pence was equal to half a pound sterling. the term {{lang|cy|chweugain}} continues to be used to mean 50 pence in modern Welsh, and phrases like {{lang|cy|pisin chweugain}} ('50p piece') are also not uncommon.
- Twenty ({{lang|gd|fichead}}) is traditionally used as a base number in Scottish Gaelic, with {{lang|gd|deich ar fhichead}} or {{lang|gd|fichead 's a deich}} being 30 (ten over twenty, or twenty and ten), {{lang|gd|dà fhichead}} 40 (two twenties), {{lang|gd|dà fhichead 's a deich}} 50 (two twenty and ten) / {{lang|gd|leth-cheud}} 50 (half a hundred), {{lang|gd|trì fichead}} 60 (three twenties) and so on up to {{lang|gd|naoidh fichead}} 180 (nine twenties). Nowadays a decimal system is taught in schools, but the vigesimal system is still used by many, particularly older speakers.
- Twenty ({{lang|gv|feed}}) is traditionally used as a base number in Manx Gaelic, with {{lang|gv|jeih as feed}} being 30 (ten and twenty), {{lang|gv|daeed }} 40 (two twenties), {{lang|gv|jeih as daeed}} 50 (ten and two twenties), {{lang|gv|tree feed}} 60 (three twenty) and so on. A decimal system also exists, using the following tens: {{lang|gv|jeih}} (ten), {{lang|gv|feed}} (twenty), {{lang|gv|treead}} (thirty), {{lang|gv|daeed}} (forty), {{lang|gv|queigad}} (fifty), {{lang|gv|sheyad}} (sixty), {{lang|gv|shiagtad}} (seventy), {{lang|gv|hoghtad}} (eighty) and {{lang|gv|nuyad}} (ninety).
- Twenty ({{lang|sq|njëzet}}) is used as a base number in Albanian. The word for 40 ({{lang|sq|dyzet}}) means "two times 20". The Arbëreshë in Italy may use {{lang|sq|trizetë}} for 60. Formerly, {{lang|sq|katërzetë}} was also used for 80. Today Cham Albanians in Greece use all {{lang|sq|zet}} numbers. Basically, 20 means 1 {{lang|sq|zet}}, 40 means 2 {{lang|sq|zet}}, 60 means 3 {{lang|sq|zet}} and 80 means 4 {{lang|sq|zet}}. Albanian is the only language in the Balkans which has retained elements of the vigesimal numeral system side by side with decimal system. The existence of the two systems in Albanian reflect the contribution of Pre-Indo-European people of the Balkans to the formation of the Paleo-Balkan Indo-European tribes and their language.{{cite book |last=Demiraj|first=Shaban|title=The origin of the Albanians: linguistically investigated |url=https://books.google.com/books?id=aXIbAQAAIAAJ |year=2006 |location=Tirana |publisher=Academy of Sciences of Albania |isbn=978-99943-817-1-5 |page=43 }}
- Twenty ({{lang|eu|hogei}}) is used as a base number in Basque for numbers up to 100 ({{lang|eu|ehun}}). The words for 40 ({{lang|eu|berrogei}}), 60 ({{lang|eu|hirurogei}}) and 80 ({{lang|eu|laurogei}}) mean "two-score", "three-score" and "four-score", respectively. For example, the number 75 is called {{lang|eu|hirurogeita hamabost}}, lit. "three-score-and ten-five". The Basque nationalist Sabino Arana proposed a vigesimal digit system to match the spoken language,Artículos publicados en la 1.ª época de "Euzkadi" : revista de Ciencias, Bellas Artes y Letras de Bilbao por Arana-Goiri'taŕ Sabin: 1901, Artículos publicados en la 1 época de "Euskadi" : revista de Ciencias, Bellas Artes y Letras de Bilbao por Arana-Goiri'ttarr Sabin : 1901, Sabino Arana, 1908, Bilbao, Eléxpuru Hermanos.
[http://www.kultura.ejgv.euskadi.net/r46-19239/es/q56War/q56ControladorServlet?mapping=detalleMonografia.do&accion=4&idObjeto=2422376&idLibro=09600015620 102–112] and, as an alternative, a reform of the spoken language to make it decimal,Artículos ..., Sabino Arana, [http://www.kultura.ejgv.euskadi.net/r46-19239/es/q56War/q56ControladorServlet?mapping=detalleMonografia.do&accion=4&idObjeto=2422386&idLibro=09600015620 112–118] but both are mostly forgotten.Efemérides Vascas y Reforma d ela Numeración Euzkérica, Sabino Arana, Biblioteca de la Gran Enciclopedia Vasca, Bilbao, 1969. Extracted from the magazine Euskal-Erria, 1880 and 1881.
- Twenty ({{lang|sl-rozaj|dwisti}} or {{lang|sl-rozaj|dwujsti}}) is used as a base number in the Resian dialect {{lang|sl-rozaj|trïkrat dwisti}} (3×20), 70 by {{lang|sl-rozaj|trïkrat dwisti nu dësat}} (3×20 + 10), 80 by {{lang|sl-rozaj|štirikrat dwisti}} (4×20) and 90 by {{lang|sl-rozaj|štirikrat dwisti nu dësat}} (4×20 + 10).Fran Ramovš, Karakteristika slovenskega narečja v Reziji in: Časopis za slovenski jezik, književnost in zgodovino, no 4, 1928, pages: 107-121 [http://abaoaqu.maldura.unipd.it:8081/resianica/slv/ramkarak.do]{{Cite web |title=dLib.si - LJUDJE OB TERU VI |url=http://www.dlib.si/details/URN:NBN:SI:doc-ZYCM5U86 |access-date=2022-02-13 |website=www.dlib.si }}
- In the £sd currency system (used in the United Kingdom pre-1971), there were 20 shillings (worth 12 pence each) to the pound. Under the decimal system introduced in 1971 (1 pound equals 100 new pence instead of 240 pence in the old system), the shilling coins still in circulation were re-valued at 5 pence (no more were minted and the shilling coin was demonetised in 1990).
- In the imperial weight system there are twenty hundredweight in a ton.
- In English, the name of the cardinal number 20 is most commonly phrased with the word 'twenty'. Counting by the score has been used historically; for example, the famous opening of the Gettysburg Address, "Four score and seven years ago...", refers to the signing of the Declaration of Independence in 1776, 87 years earlier. In the King James Bible, the term score is used over 130 times, though a single score is always expressed as "twenty". Score is still occasionally used to denote groups of 20 analogously to the use of dozen to quantify groups of 12.
- Other languages have terms similar to score, such as Danish and Norwegian {{wikt-lang|no|snes}}.
- Even in regions where greater aspects of the Brythonic Celtic languages may be less apparent in modern dialect, sheep enumeration systems that are vigesimal are recalled to the present day. See {{lang|xcb|Yan Tan Tethera}}.
= Software applications =
Open Location Code uses a word-safe version of base 20 for its geocodes. The characters in this alphabet were chosen to avoid accidentally forming words. The developers scored all possible sets of 20 letters in 30 different languages for likelihood of forming words, and chose a set that formed as few recognizable words as possible.{{cite web |title=Open Location Code: An Open Source Standard for Addresses, Independent of Building Numbers And Street Names |url=https://github.com/google/open-location-code/blob/master/docs/olc_definition.adoc#open-location-code |website=github.com |access-date=25 August 2020}} The alphabet is also intended to reduce typographical errors by avoiding visually similar digits, and is case-insensitive.
class="wikitable"
|+Word-safe base 20 |
style="text-align: left" | Base 20 digit
| 0 || 1 || 2 || 3 || 4 || 5 || 6 || 7 || 8 || 9 || 10 || 11 || 12 || 13 || 14 || 15 || 16 || 17 || 18 || 19 |
---|
style="text-align: left" | Code digit
| 2 || 3 || 4 || 5 || 6 || 7 || 8 || 9 || C || F || G || H || J || M || P || Q || R || V || W || X |
=Related observations=
- Among multiples of 10, 20 is described in a special way in some languages. For example, the Spanish words {{lang|es|treinta}} (30) and {{lang|es|cuarenta}} (40) consist of "{{lang|es|tre(3)+inta}} (10 times)", "{{lang|es|cuar(4)+enta}} (10 times)", but the word {{lang|es|veinte}} (20) is not presently connected to any word meaning "two" (although historically it isThe diachronic view is like this. {{langx|es|veinte}} < {{langx|la|vīgintī}}, the IE etymology of which ([http://starling.rinet.ru/cgi-bin/response.cgi?root=config&morpho=0&basename=%5Cdata%5Cie%5Cpiet&first=1&text_proto=&method_proto=substring&text_meaning=&method_meaning=substring&text_rusmean=&method_rusmean=substring&text_hitt=&method_hitt=substring&text_ind=&method_ind=substring&text_avest=&method_avest=substring&text_iran=&method_iran=substring&text_arm=&method_arm=substring&text_greek=&method_greek=substring&text_slav=&method_slav=substring&text_balt=&method_balt=substring&text_germ=&method_germ=substring&text_lat=v%C4%ABgint%C4%AB&method_lat=substring&text_ital=&method_ital=substring&text_celt=&method_celt=substring&text_alb=&method_alb=substring&text_tokh=&method_tokh=substring&text_refer=&method_refer=substring&text_comment=&method_comment=substring&text_any=&method_any=substring&sort=proto view]) connects it to the roots meaning [http://starling.rinet.ru/cgi-bin/response.cgi?single=1&basename=/data/ie/pokorny&text_number=+328&root=config '2'] and [http://starling.rinet.ru/cgi-bin/response.cgi?single=1&basename=/data/ie/pokorny&text_number=+369&root=config 10']. (The [http://starling.rinet.ru/cgi-bin/main.cgi?flags=eygtnnl etymological databases] of the [http://starling.rinet.ru/main.html Tower of Babel] project are referred here.)). Similarly, in Semitic languages such as Arabic and Hebrew, the numbers 30, 40 ... 90 are expressed by morphologically plural forms of the words for the numbers 3, 4 ... 9, but the number 20 is expressed by a morphologically plural form of the word for 10. The Japanese language has a special word (hatachi) for 20 years (of age), and for the 20th day of the month (hatsuka).
- In some languages (e.g. English, Slavic languages and German), the names of the two-digit numbers from 11 to 19 consist of one word, but the names of the two-digit numbers from 21 on consist of two words. So for example, the English words eleven (11), twelve (12), thirteen (13) etc., as opposed to twenty-one (21), twenty-two (22), twenty-three (23), etc. In French, this is true up to 16. In a number of other languages (such as Hebrew), the names of the numbers from 11 to 19 contain two words, but one of these words is a special "teen" form, which is different from the ordinary form of the word for the number 10, and it may in fact be only found in these names of the numbers 11–19.
- CantoneseLau, S. A Practical Cantonese English Dictionary (1977) The Government Printer and Wu Chinese frequently use the single unit {{lang|zh-Hans|廿}} (Cantonese yàh, Shanghainese nyae or ne, Mandarin niàn) for twenty, in addition to the fully decimal {{lang|zh-Hans|二十}} (Cantonese yìh sàhp, Shanghainese el sah, Mandarin èr shí) which literally means "two ten". Equivalents exist for 30 and 40 ({{lang|zh-Hans|卅}} and {{lang|zh-Hans|卌}} respectively: Mandarin sà and xì), but these are more seldom used. This is a historic remnant of a vigesimal system.{{citation needed|date=August 2015}}
- Although Khmer numerals have represented a decimal positional notation system since at least the 7th century, Old Khmer, or Angkorian Khmer, also possessed separate symbols for the numbers 10, 20, and 100. Each multiple of 20 or 100 would require an additional stroke over the character, so the number 47 was constructed using the 20 symbol with an additional upper stroke, followed by the symbol for number 7. This suggests that spoken Angkorian Khmer used a vigesimal system.
- Thai uses the term {{lang|th|ยี่สิบ}} (yi sip) for 20. Other multiples of ten consist of the base number, followed by the word for ten, e.g. {{lang|th|สามสิบ}} (sam sip), lit. three ten, for thirty. The yi of yi sip is different from the number two in other positions, which is สอง (song). Nevertheless, yi sip is a loan word from Chinese.
- Lao similarly forms multiples of ten by putting the base number in front of the word ten, so {{lang|la|ສາມສິບ}} (sam sip), litt. three ten, for thirty. The exception is twenty, for which the word {{lang|la|ຊາວ}} (xao) is used. ({{lang|la|ซาว}} sao is also used in the North-Eastern and Northern dialects of Thai, but not in standard Thai.)
- The Kharosthi numeral system behaves like a partial vigesimal system.
Examples in Mesoamerican languages
= Powers of twenty in Yucatec Maya and Nahuatl =
colspan="10" style="color:white; background-color:#970a0a;" | Powers of twenty in Yucatec Maya and Nahuatl | ||||||
---|---|---|---|---|---|---|
Number | English | Maya | Nahuatl (modern orthography) | Classical Nahuatl | Nahuatl root | Aztec pictogram |
1 | One | Hun | Se | Ce | Ce | 20px |
20 | Twenty | K'áal | Sempouali | Cempohualli (Cempoalli) | Pohualli | 20px |
400 | Four hundred | Bak | Sentsontli | Centzontli | Tzontli | 20px |
8,000 | Eight thousand | Pic | Senxikipili | Cenxiquipilli | Xiquipilli | 20px |
160,000 | One hundred sixty thousand | Calab | Sempoualxikipili | Cempohualxiquipilli | Pohualxiquipilli | |
3,200,000 | Three million two hundred thousand | Kinchil | Sentsonxikipili | Centzonxiquipilli | Tzonxiquipilli | |
64,000,000 | Sixty-four million | Alau | Sempoualtzonxikipili | Cempohualtzonxiquipilli | Pohualtzonxiquipilli |
= Counting in units of twenty =
This table shows the Maya numerals and the number names in Yucatec Maya, Nahuatl in modern orthography and in Classical Nahuatl.
colspan="10" style="color:white; background-color:#970a0a;" | From one to ten (1 – 10) | |||||||||
---|---|---|---|---|---|---|---|---|---|
1 (one) | 2 (two) | 3 (three) | 4 (four) | 5 (five) | 6 (six) | 7 (seven) | 8 (eight) | 9 (nine) | 10 (ten) |
40px | 40px | 40px | 40px | 40px | 40px | 40px | 40px | 40px | 40px |
Hun | Ka'ah | Óox | Kan | Ho' | Wak | Uk | Waxak | Bolon | Lahun |
Se | Ome | Yeyi | Naui | Makuili | Chikuasen | Chikome | Chikueyi | Chiknaui | Majtlaktli |
Ce | Ome | Yei | Nahui | Macuilli | Chicuace | Chicome | Chicuei | Chicnahui | Matlactli |
colspan="10" style="color:white; background-color:#970a0a;" | From eleven to twenty (11 – 20) | |||||||||
11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
40px | 40px | 40px | 40px | 40px | 40px | 40px | 40px | 40px | 40px 40px |
Buluk | Lahka'a | Óox lahun | Kan lahun | Ho' lahun | Wak lahun | Uk lahun | Waxak lahun | Bolon lahun | Hun k'áal |
Majtlaktli onse | Majtlaktli omome | Majtlaktli omeyi | Majtlaktli onnaui | Kaxtoli | Kaxtoli onse | Kaxtoli omome | Kaxtoli omeyi | Kaxtoli onnaui | Sempouali |
Matlactli huan ce | Matlactli huan ome | Matlactli huan yei | Matlactli huan nahui | Caxtolli | Caxtolli huan ce | Caxtolli huan ome | Caxtolli huan yei | Caxtolli huan nahui | Cempohualli |
colspan="10" style="color:white; background-color:#970a0a;" | From twenty-one to thirty (21 – 30) | |||||||||
21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
40px 40px | 40px 40px | 40px 40px | 40px 40px | 40px 40px | 40px 40px | 40px 40px | 40px 40px | 40px 40px | 40px 40px |
Hump'éel katak hun k'áal | Ka'ah katak hun k'áal | Óox katak hun k'áal | Kan katak hun k'áal | Ho' katak hun k'áal | Wak katak hun k'áal | Uk katak hun k'áal | Waxak katak hun k'áal | Bolon katak hun k'áal | Lahun katak hun k'áal |
Sempouali onse | Sempouali omome | Sempouali omeyi | Sempouali onnaui | Sempouali ommakuili | Sempouali onchikuasen | Sempouali onchikome | Sempouali onchikueyi | Sempouali onchiknaui | Sempouali ommajtlaktli |
Cempohualli huan ce | Cempohualli huan ome | Cempohualli huan yei | Cempohualli huan nahui | Cempohualli huan macuilli | Cempohualli huan chicuace | Cempohualli huan chicome | Cempohualli huan chicuei | Cempohualli huan chicnahui | Cempohualli huan matlactli |
colspan="10" style="color:white; background-color:#970a0a;" | From thirty-one to forty (31 – 40) | |||||||||
31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
40px 40px | 40px 40px | 40px 40px | 40px 40px | 40px 40px | 40px 40px | 40px 40px | 40px 40px | 40px 40px | 40px 40px |
Buluk katak hun k'áal | Lahka'a katak hun k'áal | Óox lahun katak hun k'áal | Kan lahun katak hun k'áal | Ho' lahun katak hun k'áal | Wak lahun katak hun k'áal | Uk lahun katak hun k'áal | Waxak lahun katak hun k'áal | Bolon lahun katak hun k'áal | Ka' k'áal |
Sempouali ommajtlaktli onse | Sempouali ommajtlaktli omome | Sempouali ommajtlaktli omeyi | Sempouali ommajtlaktli onnaui | Sempouali onkaxtoli | Sempouali onkaxtoli onse | Sempouali onkaxtoli omome | Sempouali onkaxtoli omeyi | Sempouali onkaxtoli onnaui | Ompouali |
Cempohualli huan matlactli huan ce | Cempohualli huan matlactli huan ome | Cempohualli huan matlactli huan yei | Cempohualli huan matlactli huan nahui | Cempohualli huan caxtolli | Cempohualli huan caxtolli huan ce | Cempohualli huan caxtolli huan ome | Cempohualli huan caxtolli huan yei | Cempohualli huan caxtolli huan nahui | Ompohualli |
colspan="10" style="color:white; background-color:#970a0a;" | From twenty to two hundred in steps of twenty (20 – 200) | |||||||||
20 | 40 | 60 | 80 | 100 | 120 | 140 | 160 | 180 | 200 |
40px 40px | 40px 40px | 40px 40px | 40px 40px | 40px 40px | 40px 40px | 40px 40px | 40px 40px | 40px 40px | 40px 40px |
Hun k'áal | Ka' k'áal | Óox k'áal | Kan k'áal | Ho' k'áal | Wak k'áal | Uk k'áal | Waxak k'áal | Bolon k'áal | Lahun k'áal |
Sempouali | Ompouali | Yepouali | Naupouali | Makuilpouali | Chikuasempouali | Chikompouali | Chikuepouali | Chiknaupouali | Majtlakpouali |
Cempohualli | Ompohualli | Yeipohualli | Nauhpohualli | Macuilpohualli | Chicuacepohualli | Chicomepohualli | Chicueipohualli | Chicnahuipohualli | Matlacpohualli |
colspan="10" style="color:white; background-color:#970a0a;" | From two hundred twenty to four hundred in steps of twenty (220 – 400) | |||||||||
220 | 240 | 260 | 280 | 300 | 320 | 340 | 360 | 380 | 400 |
40px 40px | 40px 40px | 40px 40px | 40px 40px | 40px 40px | 40px 40px | 40px 40px | 40px 40px | 40px 40px | 40px 40px 40px |
Buluk k'áal | Lahka'a k'áal | Óox lahun k'áal | Kan lahun k'áal | Ho' lahun k'áal | Wak lahun k'áal | Uk lahun k'áal | Waxak lahun k'áal | Bolon lahun k'áal | Hun bak |
Majtlaktli onse pouali | Majtlaktli omome pouali | Majtlaktli omeyi pouali | Majtlaktli onnaui pouali | Kaxtolpouali | Kaxtolli onse pouali | Kaxtolli omome pouali | Kaxtolli omeyi pouali | Kaxtolli onnaui pouali | Sentsontli |
Matlactli huan ce pohualli | Matlactli huan ome pohualli | Matlactli huan yei pohualli | Matlactli huan nahui pohualli | Caxtolpohualli | Caxtolli huan ce pohualli | Caxtolli huan ome pohualli | Caxtolli huan yei pohualli | Caxtolli huan nahui pohualli | Centzontli |
Notes
{{Reflist}}
Sources
- {{Cite book | url=https://books.google.com/books?id=ux--OWgWvBQC&pg=PA135 |title = Numerical Notation: A Comparative History |language=en |publisher=Cambridge University Press |isbn=978-0-521-87818-0|last1 = Chrisomalis| first1 = Stephen |date = 2010-01-18 |at=pp. [https://books.google.com/books?id=ux--OWgWvBQC&pg=PA135 135]–[https://books.google.com/books?id=ux--OWgWvBQC&pg=PA136 136]}}
Further reading
- Karl Menninger: Number words and number symbols: a cultural history of numbers; translated by Paul Broneer from the revised German edition. Cambridge, Mass.: M.I.T. Press, 1969 (also available in paperback: New York: Dover, 1992 {{isbn|0-486-27096-3}})
- Levi Leonard Conant: The Number Concept: Its Origin and Development; New York, New York: Macmillan & Co, 1931. [https://www.gutenberg.org/ebooks/16449 Project Gutenberg EBook]
{{Wiktionary}}
{{Authority control}}