Viral nucleoprotein

{{Technical|date=May 2025}}

Viral nucleoproteins (NPs) are essential RNA-binding proteins encoded by many viruses, especially negative-sense single-stranded RNA (–ssRNA) viruses. They play crucial roles in encapsulating viral RNA, facilitating genome replication and transcription, organizing viral ribonucleoprotein (vRNP) complexes, and evading host immunity.

Structure and function

Key functions of viral NPs include:

Examples by virus family

= [[Orthomyxoviridae]] (e.g., Influenza Virus) =

Influenza A virus NP (~56 kDa) encapsulates the segmented viral RNA genome into helical RNPs alongside the viral polymerase complex (PA, PB1, PB2). These RNPs are transported into the host nucleus, where viral replication and transcription take place. NP mediates nuclear trafficking via interactions with importins and CRM1. It also undergoes post-translational modifications such as SUMOylation that modulate its function.

= [[Arenaviridae]] (e.g., Lassa Virus, LCMV) =

Mammarenaviruses, including Lassa virus and LCMV, encode a multifunctional NP that plays central roles in genome encapsidation, replication, and immune evasion. NP interacts with the matrix Z protein, and recent research showed that Z protein myristoylation and oligomerization are not required for its dose-dependent inhibition of NP-RNP activity.

Notably, mammarenavirus NP also exploits the host protein kinase R (PKR) pathway, usually antiviral, to support viral replication; PKR activation appears to promote viral growth. The arenaviral nucleoprotein contains a C-terminal exonuclease domain (ExoN) that degrades immunostimulatory double-stranded RNA (dsRNA), helping the virus evade RIG-I-mediated interferon responses.

Structural studies reveal NP forms heptameric ring-like oligomers, a unique arrangement necessary for stable RNA binding and polymerase recruitment. Furthermore, phosphorylation of specific NP residues has been shown to affect replication complex assembly and RNA synthesis efficiency.

= [[Filoviridae]] (e.g., Ebola Virus) =

Ebola virus NP oligomerizes on the viral RNA to form a tightly coiled nucleocapsid, recruiting VP35, VP30, and L polymerase to constitute the replication complex. These complexes are organized into inclusion bodies within the cytoplasm and are essential for viral transcription.

= [[Paramyxoviridae]] (e.g., Measles Virus) =

Measles virus NP binds the viral genome with six-nucleotide periodicity to form left-handed helical nucleocapsids. NP interacts with phosphoprotein (P) and polymerase (L) to regulate transcription and replication.

Host interaction and immune evasion

NPs have evolved to manipulate host antiviral defenses:

  • Interferon Antagonism: Influenza A NP can bind TRIM25 and suppress RIG-I activation, reducing type I interferon production.
  • Stress Granule Disruption: SARS-CoV-2 NP interferes with stress granule assembly by interacting with G3BP1, impairing cellular antiviral responses.
  • PKR Modulation: In mammarenaviruses, NP indirectly leverages PKR signaling to enhance viral replication, representing a rare case of pro-viral PKR activation.

Structural insights

Structural biology has provided important insights into NP function:

  • Influenza NP forms a crescent-shaped structure that oligomerizes via a tail-loop insertion mechanism to encapsidate RNA.
  • Arenavirus and filovirus NPs assemble into ring-like or helical structures that facilitate cooperative RNA binding and efficient polymerase activity.
  • SARS-CoV-2 NP contains both a structured RNA-binding domain and disordered regions that promote liquid–liquid phase separation, supporting replication compartment formation.

Diagnostic and therapeutic applications

NPs are useful in diagnostics and immunization:

  • Diagnostics: Due to their abundance and immunogenicity, NPs are widely used in antigen and antibody tests (e.g., SARS-CoV-2, influenza).
  • Vaccines: NP-based vaccines elicit robust T cell responses, and influenza vaccines incorporating NP can offer broad cross-strain protection.

References

Riedel, S., et al. (2021). Structural insights into viral nucleoprotein-RNA interactions. Virology, 562, 17–29. https://doi.org/10.1016/j.virol.2021.06.001

{{cite journal |vauthors=Weber M, Weber F |title=RIG-I-like receptors and negative-strand RNA viruses: RLRly bird catches some worms |journal=Cytokine Growth Factor Rev |volume=25 |issue=5 |pages=621–8 |date=October 2014 |pmid=24894317 |pmc=7108359 |doi=10.1016/j.cytogfr.2014.05.004 }}

{{cite journal |vauthors=Arranz R, Coloma R, Chichón FJ, Conesa JJ, Carrascosa JL, Valpuesta JM, Ortín J, Martín-Benito J |title=The structure of native influenza virion ribonucleoproteins |journal=Science |volume=338 |issue=6114 |pages=1634–7 |date=December 2012 |pmid=23180776 |doi=10.1126/science.1228172 |bibcode=2012Sci...338.1634A }}

{{cite journal |vauthors=Lo CY, Tang YS, Shaw PC |title=Structure and Function of Influenza Virus Ribonucleoprotein |journal=Subcell Biochem |series=Subcellular Biochemistry |volume=88 |issue= |pages=95–128 |date=2018 |pmid=29900494 |doi=10.1007/978-981-10-8456-0_5 |isbn=978-981-10-8455-3 }}

{{cite journal |vauthors=Portela A, Digard P |title=The influenza virus nucleoprotein: a multifunctional RNA-binding protein pivotal to virus replication |journal=J Gen Virol |volume=83 |issue=Pt 4 |pages=723–734 |date=April 2002 |pmid=11907320 |doi=10.1099/0022-1317-83-4-723 }}

{{cite journal |vauthors=Kirchdoerfer RN, Abelson DM, Li S, Wood MR, Saphire EO |title=Assembly of the Ebola Virus Nucleoprotein from a Chaperoned VP35 Complex |journal=Cell Rep |volume=12 |issue=1 |pages=140–9 |date=July 2015 |pmid=26119732 |pmc=4500542 |doi=10.1016/j.celrep.2015.06.003 }}

{{cite journal |vauthors=Li J, Liang L, Jiang L, Wang Q, Wen X, Zhao Y, Cui P, Zhang Y, Wang G, Li Q, Deng G, Shi J, Tian G, Zeng X, Jiang Y, Liu L, Chen H, Li C |title=Viral RNA-binding ability conferred by SUMOylation at PB1 K612 of influenza A virus is essential for viral pathogenesis and transmission |journal=PLOS Pathog |volume=17 |issue=2 |pages=e1009336 |date=February 2021 |pmid=33571308 |pmc=7904188 |doi=10.1371/journal.ppat.1009336 |doi-access=free}}

{{cite journal |vauthors=Witwit H, de la Torre JC |title=Mammarenavirus Z Protein Myristoylation and Oligomerization Are Not Required for Its Dose-Dependent Inhibitory Effect on vRNP Activity |journal=Biochem |volume=5 |issue=2 |pages=10 |date=2025 |doi=10.3390/biochem5020010 |doi-access=free}}

{{cite journal |vauthors=Witwit H, Khafaji R, Salaniwal A, Kim AS, Cubitt B, Jackson N, Ye C, Weiss SR, Martinez-Sobrido L, de la Torre JC |title=Activation of protein kinase receptor (PKR) plays a pro-viral role in mammarenavirus-infected cells |journal=J Virol |volume=98 |issue=3 |pages=e0188323 |date=March 2024 |pmid=38376197 |pmc=10949842 |doi=10.1128/jvi.01883-23 }}

{{cite journal |vauthors=Hastie KM, King LB, Zandonatti MA, Saphire EO |title=Structural basis for the dsRNA specificity of the Lassa virus NP exonuclease |journal=PLOS ONE |volume=7 |issue=8 |pages=e44211 |date=2012 |pmid=22937163 |pmc=3429428 |doi=10.1371/journal.pone.0044211 |doi-access=free|bibcode=2012PLoSO...744211H }}

{{cite journal |vauthors=Brunotte L, Kerber R, Shang W, Hauer F, Hass M, Gabriel M, Lelke M, Busch C, Stark H, Svergun DI, Betzel C, Perbandt M, Günther S |title=Structure of the Lassa virus nucleoprotein revealed by X-ray crystallography, small-angle X-ray scattering, and electron microscopy |journal=J Biol Chem |volume=286 |issue=44 |pages=38748–56 |date=November 2011 |pmid=21917929 |pmc=3207459 |doi=10.1074/jbc.M111.278838 |doi-access=free}}

{{cite journal |vauthors=Knopp KA, Ngo T, Gershon PD, Buchmeier MJ |title=Single nucleoprotein residue modulates arenavirus replication complex formation |journal=mBio |volume=6 |issue=3 |pages=e00524–15 |date=April 2015 |pmid=25922393 |pmc=4436057 |doi=10.1128/mBio.00524-15 }}

{{cite journal |vauthors=Desfosses A, Milles S, Jensen MR, Guseva S, Colletier JP, Maurin D, Schoehn G, Gutsche I, Ruigrok RW, Blackledge M |title=Assembly and cryo-EM structures of RNA-specific measles virus nucleocapsids provide mechanistic insight into paramyxoviral replication |journal=Proc Natl Acad Sci U S A |volume=116 |issue=10 |pages=4256–64 |date=March 2019 |pmid=30787192 |pmc=6410849 |doi=10.1073/pnas.1816417116 |doi-access=free |bibcode=2019PNAS..116.4256D }}

{{cite journal |vauthors=Brownsword MJ, Locker N |title=A little less aggregation a little more replication: Viral manipulation of stress granules |journal=Wiley Interdiscip Rev RNA |volume=14 |issue=1 |pages=e1741 |date=January 2023 |pmid=35709333 |pmc=10078398 |doi=10.1002/wrna.1741 }}

{{cite journal |vauthors=Burbelo PD, Riedo FX, Morishima C, Rawlings S, Smith D, Das S, Strich JR, Chertow DS, Davey RT, Cohen JI |title=Detection of Nucleocapsid Antibody to SARS-CoV-2 is More Sensitive than Antibody to Spike Protein in COVID-19 Patients |journal=medRxiv |volume= |issue= |pages= |date=April 2020 |pmid=32511445 |pmc=7239070 |doi=10.1101/2020.04.20.20071423 }}

{{cite journal |vauthors=Nachbagauer R, Liu WC, Choi A, Wohlbold TJ, Atlas T, Rajendran M, Solórzano A, Berlanda-Scorza F, García-Sastre A, Palese P, Albrecht RA, Krammer F |title=A universal influenza virus vaccine candidate confers protection against pandemic H1N1 infection in preclinical ferret studies |journal=npj Vaccines |volume=2 |issue= |pages=26 |date=2017 |pmid=29263881 |pmc=5627297 |doi=10.1038/s41541-017-0026-4 }}

Category:Viral proteins