Virbhadra–Ellis lens equation

{{Technical|date=January 2022}}

The Virbhadra-Ellis lens equation {{cite journal | last1=Virbhadra | first1=K. S. | last2=Ellis | first2=George F. R. | title=Schwarzschild black hole lensing | journal=Physical Review D | publisher=American Physical Society (APS) | volume=62 | issue=8 | date=2000-09-08 | issn=0556-2821 | doi=10.1103/physrevd.62.084003 | page=084003| arxiv=astro-ph/9904193 | bibcode=2000PhRvD..62h4003V | s2cid=15956589 }} in astronomy and mathematics relates to the angular positions of an unlensed source \left(\beta\right), the image \left(\theta\right), the Einstein bending angle of light (\hat{\alpha}), and the angular diameter lens-source \left(D_{ds}\right) and observer-source \left(D_s\right) distances.

:\tan \beta = \tan \theta - \frac{D_{ds}}{D_s} \left [\tan \theta + \tan \left (\hat{\alpha}-\theta\right ) \right ].

This approximate lens equation is useful for studying the gravitational lens in strong and weak gravitational fields when the angular source position is small.

References

{{Reflist}}

{{DEFAULTSORT:Virbhadra-Ellis lens equation}}

Category:Gravitational lensing

Category:Astrophysics

Category:Equations of astronomy

{{Astrophysics-stub}}