Virtual Planetary Laboratory

{{use mdy dates|date=April 2015}}

{{Infobox organization

| name = Virtual Planetary Laboratory

| abbreviation = VPL

| motto =

| formation = 2001

| status = Active

| purpose = To detect exoplanetary habitability and their potential biosignatures.

| parent_organization = NASA

| website = {{url|http://depts.washington.edu/naivpl/|depts.washington.edu/naivpl}}

| remarks =

}}

The Virtual Planetary Laboratory (VPL) is a virtual institute based at the University of Washington that studies how to detect exoplanetary habitability and their potential biosignatures. First formed in 2001, the VPL is part of the NASA Astrobiology Institute (NAI) and connects more than fifty researchers at twenty institutions together in an interdisciplinary effort. VPL is also part of the Nexus for Exoplanet System Science (NExSS) network, with principal investigator Victoria Meadows leading the NExSS VPL team.Impey, Chris (2010). Talking about Life: Conversations on Astrobiology. Cambridge University Press. pp. 293-302. {{ISBN|9781139490634}}.Kelley, Peter (April 22, 2015). "[http://www.washington.edu/news/2015/04/22/uw-key-player-in-new-nasa-coalition-to-search-for-life-on-distant-worlds/ UW key player in new NASA coalition to search for life on distant worlds]." UW News. Retrieved May 4, 2015.

Research

= Task A: Solar System Analogs for Extrasolar Planet Observations =

The first task considers observations of the Solar System planets, moons, and the asteroid belt to explore processes necessary for habitable environments and for exoplanet model confirmation. Specifically, observations of Europa,{{cite journal|url=http://stacks.iop.org/0004-637X/741/i=1/a=51|title=Modeling the Infrared Spectrum of the Earth-Moon System: Implications for the Detection and Characterization of Earthlike Extrasolar Planets and Their Moonlike Companions|first=Tyler D.|last=Robinson|date=January 1, 2011|journal=The Astrophysical Journal|volume=741|issue=1|pages=51|via=Institute of Physics|doi=10.1088/0004-637X/741/1/51|bibcode=2011ApJ...741...51R|arxiv = 1110.3744 |s2cid=119281936}} Venus,{{cite journal|title=Spatially resolved measurements of H2O, HCl, CO, OCS, SO2, cloud opacity, and acid concentration in the Venus near-infrared spectral windows|first1=Giada|last1=Arney|first2=Victoria|last2=Meadows|first3=David|last3=Crisp|first4=Sarah J.|last4=Schmidt|first5=Jeremy|last5=Bailey|first6=Tyler|last6=Robinson|date=August 1, 2014|journal=Journal of Geophysical Research: Planets|volume=119|issue=8|pages=2014JE004662|doi=10.1002/2014JE004662|bibcode=2014JGRE..119.1860A|doi-access=free}} Earth,{{cite journal|title=Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations|first1=Tyler D.|last1=Robinson|first2=Victoria S.|last2=Meadows|first3=David|last3=Crisp|first4=Drake|last4=Deming|first5=Michael F.|last5=A'Hearn|first6=David|last6=Charbonneau|first7=Timothy A.|last7=Livengood|first8=Sara|last8=Seager|first9=Richard K.|last9=Barry|first10=Thomas|last10=Hearty|first11=Tilak|last11=Hewagama|first12=Carey M.|last12=Lisse|first13=Lucy A.|last13=McFadden|first14=Dennis D.|last14=Wellnitz|journal=Astrobiology|volume=11|issue=5|pages=393–408|doi=10.1089/ast.2011.0642|pmid=21631250|pmc=3133830|year=2011|bibcode=2011AsBio..11..393R}} Mars, and the asteroid belt have helped researchers in Task A address their goals.

= Task B: The Earth Through Time =

Our only data point of a habitable planet today is Earth, although it has not always been habitable. The Early Earth serves as an example of an exoplanet. The VPL research has contributed to the understanding of our early planet. Task B combines geological and biological data{{cite journal|title=Biogeochemical modelling of the rise in atmospheric oxygen|first1=M. W.|last1=Claire|first2=D. C.|last2=Catling|first3=K. J.|last3=Zahnle|date=December 1, 2006|journal=Geobiology|volume=4|issue=4|pages=239–269|doi=10.1111/j.1472-4669.2006.00084.x|bibcode=2006Gbio....4..239C |s2cid=11575334 }} with ecosystem{{cite journal|title=Greenhouse warming by nitrous oxide and methane in the Proterozoic Eon|first1=A. L.|last1=Roberson|first2=J.|last2=Roadt|first3=I.|last3=Halevy|first4=J. F.|last4=Kasting|date=July 1, 2011|journal=Geobiology|volume=9|issue=4|pages=313–320|doi=10.1111/j.1472-4669.2011.00286.x|pmid = 21682839|bibcode=2011Gbio....9..313R |s2cid=8426873 }} and photo-chemical models{{cite journal|title=A bistable organic-rich atmosphere on the Neoarchaean Earth|first1=Aubrey L.|last1=Zerkle|first2=Mark W.|last2=Claire|first3=Shawn D.|last3=Domagal-Goldman|first4=James|last4=Farquhar|first5=Simon W.|last5=Poulton|date=May 1, 2012|journal=Nature Geoscience|volume=5|issue=5|pages=359–363|doi=10.1038/ngeo1425|bibcode=2012NatGe...5..359Z}}{{cite journal|title=Modeling the signature of sulfur mass-independent fractionation produced in the Archean atmosphere|first1=Mark W.|last1=Claire|first2=James F.|last2=Kasting|first3=Shawn D.|last3=Domagal-Goldman|first4=Eva E.|last4=Stüeken|first5=Roger|last5=Buick|first6=Victoria S.|last6=Meadows|date=September 15, 2014|journal=Geochimica et Cosmochimica Acta|volume=141|pages=365–380|doi=10.1016/j.gca.2014.06.032|bibcode=2014GeCoA.141..365C|url=https://research-repository.st-andrews.ac.uk/bitstream/10023/5098/2/Claire2014GCA_SMIFmodel.pdf|doi-access=free}} to showcase how planet Earth has changed throughout its history.

= Task C: The Habitable Planet =

This task uses observational data, models and orbital dynamics to explore the distribution of habitable worlds in the universe. The VPL team studies the effects of galactic,{{cite journal|title=Planetary system disruption by Galactic perturbations to wide binary stars|first1=Nathan A.|last1=Kaib|first2=Sean N.|last2=Raymond|first3=Martin|last3=Duncan|date=January 17, 2013|journal=Nature|volume=493|issue=7432|pages=381–384|doi=10.1038/nature11780|pmid=23292514|bibcode=2013Natur.493..381K|arxiv = 1301.3145 |citeseerx=10.1.1.765.6816|s2cid=4303714}} stellar,{{cite journal|title=The Effect of a Strong Stellar Flare on the Atmospheric Chemistry of an Earth-like Planet Orbiting an M Dwarf|first1=Antígona|last1=Segura|author1-link=Antígona Segura|first2=Lucianne M.|last2=Walkowicz|author2-link=Lucianne Walkowicz |first3=Victoria|last3=Meadows|first4=James|last4=Kasting|first5=Suzanne|last5=Hawley|date=September 1, 2010|journal=Astrobiology|volume=10|issue=7|pages=751–771|doi=10.1089/ast.2009.0376|pmid=20879863|pmc=3103837|bibcode=2010AsBio..10..751S|arxiv = 1006.0022 }} and planetary environments{{cite journal | last1 = Kopparapu | first1 = R. K. | last2 = Raymond | first2 = S. N. | last3 = Barnes | first3 = R. | year = 2009 | title = Stability of Additional Planets in and Around the Habitable Zone of the HD 47186 Planetary System | journal = The Astrophysical Journal Letters | volume = 695 | issue = 2| pages = L181–L184 | doi=10.1088/0004-637x/695/2/l181 | bibcode=2009ApJ...695L.181K|arxiv = 0903.3597 | s2cid = 17136043 }} on planetary habitability.

= Task D: The Living Planet =

Task D incorporates VPL researchers from diverse and interdisciplinary fields who use laboratory work{{cite journal|title=Biogeography and ecology of the rare and abundant microbial lineages in deep-sea hydrothermal vents|first1=Rika E.|last1=Anderson|first2=Mitchell L.|last2=Sogin|first3=John A.|last3=Baross|date=January 1, 2015|journal=FEMS Microbiology Ecology|volume=91|issue=1|pages=1–11|doi=10.1093/femsec/fiu016|pmid=25764538|hdl=1912/7205|doi-access=free|hdl-access=free}}{{cite journal|title=Metagenomic and stable isotopic analyses of modern freshwater microbialites in Cuatro Ciénegas, Mexico|author-link1=Mya Breitbart|first1=Mya|last1=Breitbart|first2=Ana|last2=Hoare|first3=Anthony|last3=Nitti|first4=Janet|last4=Siefert|first5=Matthew|last5=Haynes|first6=Elizabeth|last6=Dinsdale|first7=Robert|last7=Edwards|first8=Valeria|last8=Souza|first9=Forest|last9=Rohwer|first10=David|last10=Hollander|date=January 1, 2009|journal=Environmental Microbiology|volume=11|issue=1|pages=16–34|doi=10.1111/j.1462-2920.2008.01725.x|pmid=18764874|bibcode=2009EnvMi..11...16B }} combined with chemical and climate models to study the impact of life on its environment. In addition, the interactions between the biosphere, planet, and host star are explored to determine how they can influence detectable biosignatures.{{cite journal|title=Using biogenic sulfur gases as remotely detectable biosignatures on anoxic planets|first1=Shawn D.|last1=Domagal-Goldman|first2=Victoria S.|last2=Meadows|first3=Mark W.|last3=Claire|first4=James F.|last4=Kasting|date=June 1, 2011|journal=Astrobiology|volume=11|issue=5|pages=419–441|doi=10.1089/ast.2010.0509|pmid=21663401|pmc=3133782|bibcode=2011AsBio..11..419D}}

= Task E: The Observer =

In the final task, the VPL scientists observe the Solar System and extrasolar planets. The goal of this task is to develop astronomical{{cite journal|title=Identifying Planetary Biosignature Impostors: Spectral Features of CO and O4 Resulting from Abiotic O2/O3 Production|first1=Edward W.|last1=Schwieterman|first2=Victoria S.|last2=Meadows|first3=Shawn D.|last3=Domagal-Goldman|first4=Drake|last4=Deming|first5=Giada N.|last5=Arney|first6=Rodrigo|last6=Luger|first7=Chester E.|last7=Harman|first8=Amit|last8=Misra|first9=Rory|last9=Barnes|date=January 1, 2016|journal=The Astrophysical Journal Letters|volume=819|issue=1|pages=L13|doi=10.3847/2041-8205/819/1/L13|pmid=30147857|pmc=6108182|bibcode=2016ApJ...819L..13S|arxiv = 1602.05584 |doi-access=free }} and remote-sensing retrieval methods. In addition, VPL members use telescope and instrument simulators to study which measurements, observing strategies, and analysis techniques are necessary for the characterization of exoplanets.{{cite journal|title=A terrestrial-sized exoplanet at the snow line of TRAPPIST-1|first1=Rodrigo|last1=Luger|display-authors=etal|date=March 12, 2017|arxiv=1703.04166|doi=10.1038/s41550-017-0129|volume=1|issue=6|journal=Nature Astronomy|page=0129|bibcode = 2017NatAs...1E.129L |s2cid=54770728}}

Models

[http://vpl.astro.washington.edu/sci/AntiModels/models09.html 1D Radiative Convective and Photochemical Models]

[http://depts.washington.edu/naivpl/content/models/solarflux Solar Flux Model]

[http://depts.washington.edu/naivpl/content/hz-calculator Habitable Zone Calculator]

Education & Outreach

[http://depts.washington.edu/naivpl/content/students Students]

[https://web.archive.org/web/20121012030513/http://depts.washington.edu/naivpl/content/teachers Teachers]

VPL in the News

[https://exoplanets.nasa.gov/news/1410/nasa-team-looks-to-ancient-earth-first-to-study-hazy-exoplanets/ February 2017] - Early Earth as a proxy for hazy exoplanets

[http://www.washington.edu/news/2016/08/29/new-discovery-proxima-b-is-in-host-stars-habitable-zone-but-could-it-really-be-habitable/ August 2016] - Is Proxima Centauri b habitable?{{Cite journal|title=The Habitability of Proxima Centauri b: II: Environmental States and Observational Discriminants|journal=Astrobiology|volume=18|issue=2|pages=133–189|display-authors=etal|date=August 30, 2016|arxiv=1608.08620|doi=10.1089/ast.2016.1589|pmid=29431479|pmc=5820795|last1=Meadows|first1=V. S.|last2=Arney|first2=G. N.|last3=Schwieterman|first3=E. W.|last4=Lustig-Yaeger|first4=J.|last5=Lincowski|first5=A. P.|last6=Robinson|first6=T.|last7=Domagal-Goldman|first7=S. D.|last8=Deitrick|first8=R.|last9=Barnes|first9=R. K.|last10=Fleming|first10=D. P.|last11=Luger|first11=R.|last12=Driscoll|first12=P. E.|last13=Quinn|first13=T. R.|last14=Crisp|first14=D.|bibcode=2018AsBio..18..133M}}{{cite arXiv|title=The Habitability of Proxima Centauri b I: Evolutionary Scenarios|first1=Rory|last1=Barnes|display-authors=etal|date=August 24, 2016|eprint=1608.06919|class=astro-ph.EP}}

See also

References

{{reflist}}