Volkenborn integral
In mathematics, in the field of p-adic analysis, the Volkenborn integral is a method of integration for p-adic functions.
Definition
Let : be a function from the p-adic integers taking values in the p-adic numbers. The Volkenborn integral is defined by the limit, if it exists:
:
More generally, if
:
then
:
This integral was defined by Arnt Volkenborn.
Examples
:
:
:
:
where is the k-th Bernoulli number.
The above four examples can be easily checked by direct use of the definition and Faulhaber's formula.
:
:
:
The last two examples can be formally checked by expanding in the Taylor series and integrating term-wise.
:
with the p-adic logarithmic function and the p-adic digamma function.
Properties
:
From this it follows that the Volkenborn-integral is not translation invariant.
If then
:
See also
References
- Arnt Volkenborn: Ein p-adisches Integral und seine Anwendungen I. In: Manuscripta Mathematica. Bd. 7, Nr. 4, 1972, [http://eudml.org/doc/154126]
- Arnt Volkenborn: Ein p-adisches Integral und seine Anwendungen II. In: Manuscripta Mathematica. Bd. 12, Nr. 1, 1974, [http://eudml.org/doc/154225]
- Henri Cohen, "Number Theory", Volume II, page 276
{{analysis-stub}}