Volume of an n-ball

{{Short description|Size of a mathematical ball}}

{{DISPLAYTITLE:Volume of an n-ball}}

File:Volumes of unit balls.svg

In geometry, a ball is a region in a space comprising all points within a fixed distance, called the radius, from a given point; that is, it is the region enclosed by a sphere or hypersphere. An {{math|n}}-ball is a ball in an {{math|n}}-dimensional Euclidean space. The volume of a {{math|n}}-ball is the Lebesgue measure of this ball, which generalizes to any dimension the usual volume of a ball in 3-dimensional space. The volume of a {{mvar|n}}-ball of radius {{mvar|R}} is R^nV_n, where V_n is the volume of the unit ball, the {{mvar|n}}-ball of radius {{math|1}}.

The real number V_n can be expressed via a two-dimension recurrence relation.

Closed-form expressions involve the gamma, factorial, or double factorial function.

The volume can also be expressed in terms of A_n, the area of the unit n-sphere.

Formulas

{{See also|N-sphere#Volume and area|Unit sphere#Volume and area}}

The first volumes are as follows:

class="wikitable"

! Dimension !! Volume of a ball of radius {{math|R}} !! Radius of a ball of volume {{math|V}}

0

| 1

| (all 0-balls have volume 1)

1

| 2R

| \frac{V}{2}=0.5\times V

2

| \pi R^2 \approx 3.142\times R^2

| \frac{V^{1/2}}{\sqrt{\pi}}\approx 0.564\times V^{\frac{1}{2}}

3

| \frac{4\pi}{3} R^3 \approx 4.189\times R^3

| \left(\frac{3V}{4\pi}\right)^{1/3}\approx 0.620\times V^{1/3}

4

| \frac{\pi^2}{2} R^4 \approx 4.935\times R^4

| \frac{(2V)^{1/4}}{\sqrt{\pi}}\approx 0.671\times V^{1/4}

5

| \frac{8\pi^2}{15} R^5\approx 5.264\times R^5

| \left(\frac{15V}{8\pi^2}\right)^{1/5}\approx 0.717\times V^{1/5}

6

| \frac{\pi^3}{6} R^6 \approx 5.168 \times R^6

| \frac{(6V)^{1/6}}{\sqrt{\pi}}\approx 0.761\times V^{1/6}

7

| \frac{16\pi^3}{105} R^7 \approx 4.725\times R^7

| \left(\frac{105V}{16\pi^3}\right)^{1/7}\approx 0.801\times V^{1/7}

8

| \frac{\pi^4}{24} R^8 \approx 4.059\times R^8

| \frac{(24V)^{1/8}}{\sqrt{\pi}}\approx 0.839\times V^{1/8}

9

| \frac{32\pi^4}{945} R^9 \approx 3.299\times R^9

| \left(\frac{945V}{32\pi^4}\right)^{1/9}\approx 0.876\times V^{1/9}

10

| \frac{\pi^5}{120} R^{10} \approx 2.550\times R^{10}

| \frac{(120V)^{1/10}}{\sqrt{\pi}}\approx 0.911\times V^{1/10}

11

| \frac{64\pi^5}{10395} R^{11} \approx 1.884\times R^{11}

| \left(\frac{10395V}{64\pi^5}\right)^{1/11}\approx 0.944\times V^{1/11}

12

| \frac{\pi^6}{720} R^{12} \approx 1.335\times R^{12}

| \frac{(720V)^{1/12}}{\sqrt{\pi}}\approx 0.976\times V^{1/12}

13

| \frac{128\pi^6}{135135} R^{13} \approx 0.911\times R^{13}

| \left(\frac{135135V}{128\pi^6}\right)^{1/13}\approx 1.007\times V^{1/13}

14

| \frac{\pi^7}{5040} R^{14} \approx 0.599\times R^{14}

| \frac{(5040V)^{1/14}}{\sqrt{\pi}}\approx 1.037\times V^{1/14}

15

| \frac{256\pi^7}{2027025} R^{15} \approx 0.381\times R^{15}

| \left(\frac{2027025V}{256\pi^7}\right)^{1/15}\approx 1.066\times V^{1/15}

nVn(R)Rn(V)

= Closed form =

The {{math|n}}-dimensional volume of a Euclidean ball of radius {{math|R}} in {{math|n}}-dimensional Euclidean space is:Equation 5.19.4, NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/5.19#E4, Release 1.0.6 of 2013-05-06.

:V_n(R) = \frac{\pi^{n/2}}{\Gamma\bigl(\tfrac n2 + 1\bigr)}R^n,

where {{math|Γ}} is Euler's gamma function. The gamma function is offset from but otherwise extends the factorial function to non-integer arguments. It satisfies {{math|Γ(n) {{=}} (n − 1)!}} if {{math|n}} is a positive integer and {{math|Γ(n + {{sfrac|1|2}}) {{=}} (n − {{sfrac|1|2}}) · (n − {{sfrac|3|2}}) · … · {{sfrac|1|2}} · {{pi}}1/2}} if {{math|n}} is a non-negative integer.

= Two-dimension recurrence relation =

The volume can be computed without use of the Gamma function. As is proved below using a vector-calculus double integral in polar coordinates, the volume {{math|V}} of an {{math|n}}-ball of radius {{math|R}} can be expressed recursively in terms of the volume of an {{math|(n − 2)}}-ball, via the interleaved recurrence relation:

:

V_n(R) = \begin{cases}

1 &\text{if } n=0,\\[0.5ex]

2R &\text{if } n=1,\\[0.5ex]

\dfrac{2\pi}{n}R^2 \times V_{n-2}(R) &\text{otherwise}.

\end{cases}

This allows computation of {{math|V{{sub|n}}(R)}} in approximately {{math|n / 2}} steps.

= Alternative forms =

The volume can also be expressed in terms of an {{math|(n − 1)}}-ball using the one-dimension recurrence relation:

:\begin{align}

V_0(R) &= 1, \\

V_n(R) &= \frac{\Gamma\bigl(\tfrac n2 + \tfrac12 \bigr)\sqrt\pi}{\Gamma\bigl(\tfrac n2 + 1\bigr)}R\, V_{n-1}(R).

\end{align}

Inverting the above, the radius of an {{math|n}}-ball of volume {{math|V}} can be expressed recursively in terms of the radius of an {{math|(n − 2)}}- or {{math|(n − 1)}}-ball:

:\begin{align}

R_n(V) &= \bigl(\tfrac12n\bigr)^{1/n}\left(\Gamma\bigl(\tfrac n2\bigr) V\right)^{-2/(n(n-2))}R_{n-2}(V), \\

R_n(V) &= \frac{\Gamma\bigl(\tfrac n2 + 1\bigr)^{1/n}}{\Gamma\bigl(\tfrac n2 + \tfrac12 \bigr)^{1/(n-1)}}V^{-1/(n(n-1))}R_{n-1}(V).

\end{align}

Using explicit formulas for particular values of the gamma function at the integers and half-integers gives formulas for the volume of a Euclidean ball in terms of factorials. For non-negative integer {{mvar|k}}, these are:

:\begin{align}

V_{2k}(R) &= \frac{\pi^k}{k!}R^{2k}, \\

V_{2k+1}(R) &= \frac{2(k!)(4\pi)^k}{(2k + 1)!}R^{2k+1}.

\end{align}

The volume can also be expressed in terms of double factorials. For a positive odd integer {{math|2k + 1}}, the double factorial is defined by

:(2k + 1)!! = (2k + 1) \cdot (2k - 1) \dotsm 5 \cdot 3 \cdot 1.

The volume of an odd-dimensional ball is

:V_{2k+1}(R) = \frac{2(2\pi)^k}{(2k + 1)!!}R^{2k+1}.

There are multiple conventions for double factorials of even integers. Under the convention in which the double factorial satisfies

:(2k)!! = (2k) \cdot (2k - 2) \dotsm 4 \cdot 2 \cdot \sqrt{2/\pi} = 2^k \cdot k! \cdot \sqrt{2/\pi},

the volume of an {{math|n}}-dimensional ball is, regardless of whether {{math|n}} is even or odd,

:V_n(R) = \frac{2(2\pi)^{(n-1)/2}}{n!!}R^n.

Instead of expressing the volume {{math|V}} of the ball in terms of its radius {{math|R}}, the formulas can be inverted to express the radius as a function of the volume:

:\begin{align}

R_n(V) &= \frac{\Gamma\bigl(\tfrac n2 + 1\bigr)^{1/n}}{\sqrt{\pi}}V^{1/n} \\

&= \left(\frac{n!! V}{2(2\pi)^{(n-1)/2}}\right)^{1/n} \\

R_{2k}(V) &= \frac{(k!V)^{1/(2k)}}{\sqrt{\pi}}, \\

R_{2k+1}(V) &= \left(\frac{(2k+1)!V}{2(k!)(4\pi)^k}\right)^{1/(2k+1)}.\end{align}

= Approximation for high dimensions=

Stirling's approximation for the gamma function can be used to approximate the volume when the number of dimensions is high.

:V_n(R) \sim \frac{1}{\sqrt{n\pi}}\left(\frac{2\pi e}{n}\right)^{n/2}R^n.

:R_n(V) \sim (\pi n)^{1/(2n)}\sqrt{\frac{n}{2\pi e}} V^{1/n}.

In particular, for any fixed value of {{math|R}} the volume tends to a limiting value of 0 as {{math|n}} goes to infinity. Which value of {{mvar|n}} maximizes {{math|V{{sub|n}}(R)}} depends upon the value of {{mvar|R}}; for example, the volume {{math|Vn(1)}} is increasing for {{math|0 ≤ n ≤ 5}}, achieves its maximum when {{math|n {{=}} 5}}, and is decreasing for {{math|n ≥ 5}}.Smith, David J. and Vamanamurthy, Mavina K., "How Small Is a Unit Ball?", Mathematics Magazine, Volume 62, Issue 2, 1989, pp. 101–107, https://doi.org/10.1080/0025570X.1989.11977419.

Also, there is an asymptotic formula for the surface area{{Cite web | url=https://www.stat.berkeley.edu/~songmei/Teaching/STAT260_Spring2021/Lecture_notes/scribe_lecture7.pdf | title=Lecture 7: Concentration Inequalities and Field theoretic calculations | date=2021-02-10 | author=Song Mei | website=www.stat.berkeley.edu}}\lim_n \frac 1n \ln A_{n-1}(\sqrt n) = \frac 12 (\ln(2\pi) + 1)

= Relation with surface area =

File:Surface areas of unit hyperspheres.svg

Let {{math|A{{sub|n − 1}}(R)}} denote the hypervolume of the n-sphere of radius {{math|R}}. The {{math|(n − 1)}}-sphere is the {{math|(n − 1)}}-dimensional boundary (surface) of the {{math|n}}-dimensional ball of radius {{math|R}}, and the sphere's hypervolume and the ball's hypervolume are related by:

:A_{n-1}(R) = \frac{d}{dR} V_{n}(R) = \frac{n}{R}V_{n}(R).

Thus, {{math|A{{sub|n − 1}}(R)}} inherits formulas and recursion relationships from {{math|V{{sub|n}}(R)}}, such as

:A_{n-1}(R) = \frac{2\pi^{n/2}}{\Gamma\bigl(\tfrac n2\bigr)}R^{n-1}.

There are also formulas in terms of factorials and double factorials.

Proofs

There are many proofs of the above formulas.

= The volume is proportional to the {{math|''n''}}th power of the radius =

An important step in several proofs about volumes of {{math|n}}-balls, and a generally useful fact besides, is that the volume of the {{math|n}}-ball of radius {{math|R}} is proportional to {{math|Rn}}:

:V_n(R) \propto R^n.

The proportionality constant is the volume of the unit ball.

This is a special case of a general fact about volumes in {{math|n}}-dimensional space: If {{math|K}}

is a body (measurable set) in that space and {{math|RK}} is the body obtained by stretching in all directions by the factor {{math|R}} then the volume of {{math|RK}} equals {{math|Rn}} times the volume of {{math|K}}. This is a direct consequence of the change of variables formula:

: V(RK) = \int_{RK} dx = \int_K R^n\, dy = R^n V(K)

where {{math|1=dx = dx1dxn}} and the substitution {{math|1=x = Ry}} was made.

Another proof of the above relation, which avoids multi-dimensional integration, uses induction: The base case is {{math|n {{=}} 0}}, where the proportionality is obvious. For the inductive step, assume that proportionality is true in dimension {{math|n − 1}}. Note that the intersection of an n-ball with a hyperplane is an {{math|(n − 1)}}-ball. When the volume of the {{math|n}}-ball is written as an integral of volumes of {{math|(n − 1)}}-balls:

:V_n(R) = \int_{-R}^R V_{n-1}\!\left(\sqrt{R^2 - x^2}\right) dx,

it is possible by the inductive hypothesis to remove a factor of {{math|R}} from the radius of the {{math|(n − 1)}}-ball to get:

:V_n(R) = R^{n-1}\! \int_{-R}^R V_{n-1}\!\left(\sqrt{1 - \left(\frac{x}{R}\right)^2}\right) dx.

Making the change of variables {{math|t {{=}} {{sfrac|x|R}}}} leads to:

:V_n(R) = R^n\! \int_{-1}^1 V_{n-1}\!\left(\sqrt{1 - t^2}\right) dt = R^n V_n(1),

which demonstrates the proportionality relation in dimension {{math|n}}. By induction, the proportionality relation is true in all dimensions.

= The two-dimension recursion formula =

A proof of the recursion formula relating the volume of the {{math|n}}-ball and an {{math|(n − 2)}}-ball can be given using the proportionality formula above and integration in cylindrical coordinates. Fix a plane through the center of the ball. Let {{math|r}} denote the distance between a point in the plane and the center of the sphere, and let {{math|θ}} denote the azimuth. Intersecting the {{math|n}}-ball with the {{math|(n − 2)}}-dimensional plane defined by fixing a radius and an azimuth gives an {{math|(n − 2)}}-ball of radius {{math|{{sqrt|R2r2}}}}. The volume of the ball can therefore be written as an iterated integral of the volumes of the {{math|(n − 2)}}-balls over the possible radii and azimuths:

:V_n(R) = \int_0^{2\pi} \int_0^R V_{n-2}\!\left(\sqrt{R^2 - r^2}\right) r\,dr\,d\theta,

The azimuthal coordinate can be immediately integrated out. Applying the proportionality relation shows that the volume equals

:V_n(R) = 2\pi V_{n-2}(R) \int_0^R \left(1 - \left(\frac{r}{R}\right)^2\right)^{(n-2)/2}\,r\,dr.

The integral can be evaluated by making the substitution {{math|u {{=}} 1 − ({{sfrac|r|R}}){{su|p=2}}}} to get

:\begin{align}

V_n(R) &= 2\pi V_{n-2}(R) \cdot \left[-\frac{R^2}{n}\left(1 - \left(\frac{r}{R}\right)^2\right)^{n/2}\right]_{r=0}^{r=R} \\

&= \frac{2\pi R^2}{n} V_{n-2}(R),

\end{align}

which is the two-dimension recursion formula.

The same technique can be used to give an inductive proof of the volume formula. The base cases of the induction are the 0-ball and the 1-ball, which can be checked directly using the facts {{math|Γ(1) {{=}} 1}} and {{math|Γ({{sfrac|3|2}}) {{=}} {{sfrac|1|2}} · Γ({{sfrac|1|2}}) {{=}} {{sfrac|{{sqrt|{{pi}}}}|2}}}}. The inductive step is similar to the above, but instead of applying proportionality to the volumes of the {{math|(n − 2)}}-balls, the inductive hypothesis is applied instead.

= The one-dimension recursion formula =

The proportionality relation can also be used to prove the recursion formula relating the volumes of an {{math|n}}-ball and an {{math|(n − 1)}}-ball. As in the proof of the proportionality formula, the volume of an {{math|n}}-ball can be written as an integral over the volumes of {{math|(n − 1)}}-balls. Instead of making a substitution, however, the proportionality relation can be applied to the volumes of the {{math|(n − 1)}}-balls in the integrand:

:V_n(R) = V_{n-1}(R) \int_{-R}^R \left(1 - \left(\frac{x}{R}\right)^2\right)^{(n-1)/2} \,dx.

The integrand is an even function, so by symmetry the interval of integration can be restricted to {{math|[0, R]}}. On the interval {{math|[0, R]}}, it is possible to apply the substitution {{math|u {{=}} ({{sfrac|x|R}}){{su|p=2}}}}. This transforms the expression into

:V_{n-1}(R) \cdot R \cdot \int_0^1 (1-u)^{(n-1)/2}u^{-\frac12}\,du

The integral is a value of a well-known special function called the beta function {{math|Β(x, y)}}, and the volume in terms of the beta function is

:V_n(R) = V_{n-1}(R) \cdot R \cdot \Beta\left(\tfrac{n + 1}2, \tfrac12\right).

The beta function can be expressed in terms of the gamma function in much the same way that factorials are related to binomial coefficients. Applying this relationship gives

:V_n(R) = V_{n-1}(R) \cdot R \cdot \frac{\Gamma\bigl(\tfrac n2 + \tfrac12 \bigr)\Gamma\bigl(\tfrac12\bigr)}{\Gamma\bigl(\tfrac n2 + 1\bigr)}.

Using the value {{math|Γ({{sfrac|1|2}}) {{=}} {{sqrt|{{pi}}}}}} gives the one-dimension recursion formula:

:V_n(R) = R\sqrt{\pi}\frac{\Gamma\bigl(\tfrac n2 + \tfrac12\bigr)}{\Gamma\bigl(\tfrac n2 + 1\bigr)} V_{n-1}(R).

As with the two-dimension recursive formula, the same technique can be used to give an inductive proof of the volume formula.

= Direct integration in spherical coordinates =

The volume of the n-ball V_n(R) can be computed by integrating the volume element in spherical coordinates. The spherical coordinate system has a radial coordinate {{math|r}} and angular coordinates {{math|φ1, …, φn − 1}}, where the domain of each {{math|φ}} except {{math|φn − 1}} is {{math|[0, {{pi}})}}, and the domain of {{math|φn − 1}} is {{math|[0, 2{{pi}})}}. The spherical volume element is:

:dV = r^{n-1}\sin^{n-2}(\varphi_1)\sin^{n-3}(\varphi_2) \cdots \sin(\varphi_{n-2})\,dr\,d\varphi_1\,d\varphi_2 \cdots d\varphi_{n-1},

and the volume is the integral of this quantity over {{math|r}} between 0 and {{math|R}} and all possible angles:

:V_n(R) = \int_0^R \int_0^\pi \cdots \int_0^{2\pi} r^{n-1}\sin^{n-2}(\varphi_1) \cdots \sin(\varphi_{n-2})\,d\varphi_{n-1} \cdots d\varphi_1\,dr.

Each of the factors in the integrand depends on only a single variable, and therefore the iterated integral can be written as a product of integrals:

:V_n(R) = \left(\int_0^R r^{n-1}\,dr\right)\!\left(\int_0^\pi \sin^{n-2}(\varphi_1)\,d\varphi_1\right)\cdots\left(\int_0^{2\pi} d\varphi_{n-1}\right).

The integral over the radius is {{math|{{sfrac|Rn|n}}}}. The intervals of integration on the angular coordinates can, by the symmetry of the sine about {{sfrac|{{pi}}|2}}, be changed to {{math|[0, {{sfrac|{{pi}}|2}}]}}:

:V_n(R) = \frac{R^n}{n} \left(2\int_0^{\pi/2} \sin^{n-2}(\varphi_1)\,d\varphi_1\right) \cdots \left(4\int_0^{\pi/2} d\varphi_{n-1}\right).

Each of the remaining integrals is now a particular value of the beta function:

:V_n(R) = \frac{R^n}{n} \Beta\bigl(\tfrac{n-1}2, \tfrac12\bigr) \Beta\bigl(\tfrac{n-2}2, \tfrac12\bigr) \cdots \Beta\bigl(1, \tfrac12\bigr) \cdot 2\,\Beta\bigl(\tfrac12, \tfrac12\bigr).

The beta functions can be rewritten in terms of gamma functions:

:V_n(R) = \frac{R^n}{n} \cdot \frac{\Gamma\bigl(\tfrac n2 - \tfrac12\bigr)\Gamma\bigl(\tfrac12\bigr)}{\Gamma\bigl(\tfrac n2\bigr)} \cdot \frac{\Gamma\bigl(\tfrac n2 - 1\bigr)\Gamma\bigl(\tfrac12\bigr)}{\Gamma\bigl(\tfrac n2 - \tfrac12\bigr)} \cdots \frac{\Gamma(1)\Gamma\bigl(\tfrac12\bigr)}{\Gamma\bigl(\tfrac32\bigr)} \cdot 2 \frac{\Gamma\bigl(\tfrac12\bigr)\Gamma\bigl(\tfrac12\bigr)}{\Gamma(1)}.

This product telescopes. Combining this with the values {{math|Γ({{sfrac|1|2}}) {{=}} {{sqrt|{{pi}}}}}} and {{math|Γ(1) {{=}} 1}} and the functional equation {{math|zΓ(z) {{=}} Γ(z + 1)}} leads to

:V_n(R) = \frac{2\pi^{n/2}R^n}{n\,\Gamma\bigl(\tfrac n2\bigr)} = \frac{\pi^{n/2}R^n}{\Gamma\bigl(\tfrac n2 + 1\bigr)}.

= Gaussian integrals =

The volume formula can be proven directly using Gaussian integrals. Consider the function:

:f(x_1, \ldots, x_n) = \exp\biggl({-\tfrac12 \sum_{i=1}^n x_i^2}\biggr).

This function is both rotationally invariant and a product of functions of one variable each. Using the fact that it is a product and the formula for the Gaussian integral gives:

:\int_{\mathbf{R}^n} f \,dV = \prod_{i=1}^n \left(\int_{-\infty}^\infty \exp\left(-\tfrac12 x_i^2\right)\,dx_i\right) = (2\pi)^{n/2},

where {{math|dV}} is the {{math|n}}-dimensional volume element. Using rotational invariance, the same integral can be computed in spherical coordinates:

:\int_{\mathbf{R}^n} f \,dV = \int_0^\infty \int_{S^{n-1}(r)} \exp\left(-\tfrac12 r^2\right) \,dA\,dr,

where {{math|Sn − 1(r)}} is an {{math|(n − 1)}}-sphere of radius {{math|r}} (being the surface of an {{math|n}}-ball of radius {{math|r}}) and {{math|dA}} is the area element (equivalently, the {{math|(n − 1)}}-dimensional volume element). The surface area of the sphere satisfies a proportionality equation similar to the one for the volume of a ball: If {{math|An − 1(r)}} is the surface area of an {{math|(n − 1)}}-sphere of radius {{math|r}}, then:

:A_{n-1}(r) = r^{n-1} A_{n-1}(1).

Applying this to the above integral gives the expression

:(2\pi)^{n/2} = \int_0^\infty \int_{S^{n-1}(r)} \exp\left(-\tfrac12 r^2\right) \,dA\,dr = A_{n-1}(1) \int_0^\infty \exp\left(-\tfrac12 r^2\right)\,r^{n-1}\,dr.

Substituting {{math|t {{=}} {{sfrac|r2|2}}}}:

:\int_0^\infty \exp\left(-\tfrac12 r^2\right)\,r^{n-1}\,dr = 2^{(n-2)/2} \int_0^\infty e^{-t} t^{(n-2)/2}\,dt.

The integral on the right is the gamma function evaluated at {{math|{{sfrac|n|2}}}}.

Combining the two results shows that

:A_{n-1}(1) = \frac{2\pi^{n/2}}{\Gamma\bigl(\tfrac n2\bigr)}.

To derive the volume of an {{math|n}}-ball of radius {{math|R}} from this formula, integrate the surface area of a sphere of radius {{math|r}} for {{math|0 ≤ rR}} and apply the functional equation {{math|zΓ(z) {{=}} Γ(z + 1)}}:

:V_n(R) = \int_0^R \frac{2\pi^{n/2}}{\Gamma\bigl(\tfrac n2\bigr)} \,r^{n-1}\,dr = \frac{2\pi^{n/2}}{n\,\Gamma\bigl(\tfrac n2\bigr)}R^n = \frac{\pi^{n/2}}{\Gamma\bigl(\tfrac n2 + 1\bigr)}R^n.

= Geometric proof =

The relations V_{n+1}(R) = \frac{R}{n+1}A_n(R) and A_{n+1}(R) = (2\pi R)V_n(R) and thus the volumes of n-balls and areas of n-spheres can also be derived geometrically. As noted above, because a ball of radius R is obtained from a unit ball B_n by rescaling all directions in R times, V_n(R) is proportional to R^n, which implies \frac{dV_n(R)}{dR} = \frac{n}{R} V_n(R). Also, A_{n-1}(R) = \frac{dV_n(R)}{dR} because a ball is a union of concentric spheres and increasing radius by ε corresponds to a shell of thickness ε. Thus, V_{n}(R) = \frac{R}{n}A_{n-1}(R); equivalently, V_{n+1}(R) = \frac{R}{n+1}A_n(R).

A_{n+1}(R) = (2\pi R)V_n(R) follows from existence of a volume-preserving bijection between the unit sphere S_{n+1} and S_1 \times B_n:

: (x,y,\vec{z}) \mapsto \left(\frac{x}{\sqrt{x^2+y^2}},\frac{y}{\sqrt{x^2+y^2}},\vec{z}\right)

(\vec{z} is an n-tuple; |(x,y,\vec{z})|=1; we are ignoring sets of measure 0). Volume is preserved because at each point, the difference from isometry is a stretching in the xy plane (in 1/\!\sqrt{x^2+y^2} times in the direction of constant x^2+y^2) that exactly matches the compression in the direction of the gradient of |\vec{z}| on S_n (the relevant angles being equal). For S_2, a similar argument was originally made by Archimedes in On the Sphere and Cylinder.

Balls in {{math|''L''{{isup|''p''}}}} norms

There are also explicit expressions for the volumes of balls in Lp spaces. The {{math|L{{isup|p}}}} norm of the vector {{math|x {{=}} (x1, …, xn)}} in {{math|Rn}} is

:\|x\|_p = \biggl(\sum_{i=1}^n | x_i |^p \biggr)^{\! 1/p},

and an {{math|L{{isup|p}}}} ball is the set of all vectors whose {{math|L{{isup|p}}}} norm is less than or equal to a fixed number called the radius of the ball. The case {{math|p {{=}} 2}} is the standard Euclidean distance function, but other values of {{math|p}} occur in diverse contexts such as information theory, coding theory, and dimensional regularization.

The volume of an {{math|L{{isup|p}}}} ball of radius {{math|R}} is

:V^p_n(R) = \frac{\Bigl(2\,\Gamma\bigl(\tfrac1p + 1\bigr)\Bigr)^n}{\Gamma\bigl(\tfrac np + 1\bigr)}R^n.

These volumes satisfy recurrence relations similar to those for {{math|p {{=}} 2}}:

:V^p_n(R) = \frac{\Bigl(2\,\Gamma\bigl(\tfrac1p + 1\bigr)\Bigr)^p p}{n} R^p \, V^p_{n-p}(R)

and

:V^p_n(R) = 2 \frac{\Gamma\bigl(\tfrac1p + 1\bigr)\Gamma\bigl(\tfrac{n-1}p + 1\bigr)}{\Gamma\bigl(\tfrac np + 1\bigr)} R \, V^p_{n-1}(R),

which can be written more concisely using a generalized binomial coefficient,

:V^p_n(R) = \frac{2}{\dbinom{n/p}{1/p}} R \, V^p_{n-1}(R).

For {{math|p {{=}} 2}}, one recovers the recurrence for the volume of a Euclidean ball because {{math|2Γ({{sfrac|3|2}}) {{=}} {{radic|{{pi}}}}}}.

For example, in the cases {{math|p {{=}} 1}} (taxicab norm) and {{math|p {{=}} ∞}} (max norm), the volumes are:

:\begin{align} V^1_n(R) &= \frac{2^n}{n!}R^n, \\ V^\infty_n(R) &= 2^n R^n. \end{align}

These agree with elementary calculations of the volumes of cross-polytopes and hypercubes.

= Relation with surface area =

For most values of {{math|p}}, the surface area A_{n-1}^p(R) of an {{math|L{{isup|p}}}} sphere of radius {{math|R}} (the boundary of an {{math|L{{isup|p}}}} {{math|n}}-ball of radius {{math|R}}) cannot be calculated by differentiating the volume of an {{math|L{{isup|p}}}} ball with respect to its radius. While the volume can be expressed as an integral over the surface areas using the coarea formula, the coarea formula contains a correction factor that accounts for how the {{math|p}}-norm varies from point to point. For {{math|p {{=}} 2}} and {{math|p {{=}} ∞}}, this factor is one. However, if {{math|p {{=}} 1}} then the correction factor is {{math|{{sqrt|n}}}}: the surface area of an {{math|L1}} sphere of radius {{math|R}} in {{math|Rn}} is {{math|{{sqrt|n}}}} times the derivative of the volume of an {{math|L1}} ball. This can be seen most simply by applying the divergence theorem to the vector field {{math|F(x) {{=}} x}} to get

:nV^1_n(R) = {{oiint

| preintegral = \iiint_V\left(\mathbf{\nabla}\cdot\mathbf{F}\right)\,dV=

| intsubscpt = \scriptstyle S

| integrand = (\mathbf{F}\cdot\mathbf{n})\,dS

}} = {{oiint

| intsubscpt = \scriptstyle S

| integrand = \frac{1}{\sqrt{n}}(|x_1|+\cdots+|x_n|)\,dS

}} = \frac{R}{\sqrt{n}} {{oiint

| intsubscpt = \scriptstyle S

| integrand = \,dS

}} = \frac{R}{\sqrt{n}} A^1_{n-1}(R).

For other values of {{math|p}}, the constant is a complicated integral.

= Generalizations =

The volume formula can be generalized even further. For positive real numbers {{math|p1, …, pn}}, define the {{math|(p1, …, pn)}} ball with limit {{math|L ≥ 0}} to be

:B_{p_1, \ldots, p_n}(L) = \left\{ x = (x_1, \ldots, x_n) \in \mathbf{R}^n : \vert x_1 \vert^{p_1} + \cdots + \vert x_n \vert^{p_n} \le L \right\}.

The volume of this ball has been known since the time of Dirichlet:{{cite journal|last=Dirichlet|first=P. G. Lejeune|title=Sur une nouvelle méthode pour la détermination des intégrales multiples|trans-title=On a novel method for determining multiple integrals|journal=Journal de Mathématiques Pures et Appliquées|volume=4|date=1839|pages=164–168}}

:V\bigl(B_{p_1, \ldots, p_n}(L)\bigr) = \frac{2^n \Gamma\bigl(\tfrac1{p_1} + 1\bigr) \cdots \Gamma\bigl(\tfrac1{p_n} + 1\bigr)}{\Gamma\bigl(\tfrac1{p_1} + \cdots + \tfrac1{p_n} + 1\bigr)} L^{\tfrac1{p_1} + \cdots + \tfrac1{p_n}}.

== Comparison to {{math|''L''{{isup|''p''}}}} norm ==

Using the harmonic mean p = \frac{n}{\frac{1}{p_1} + \cdots \frac{1}{p_n}} and defining R = \sqrt[p]{L}, the similarity to the volume formula for the {{math|L{{isup|p}}}} ball becomes clear.

:V\left(\left\{ x \in \mathbf{R}^n : \sqrt[p]{\vert x_1 \vert^{p_1} + \cdots + \vert x_n \vert^{p_n}} \le R \right\}\right) = \frac{2^n \Gamma\bigl(\tfrac1{p_1} + 1\bigr) \cdots \Gamma\bigl(\tfrac1{p_n} + 1\bigr)}{\Gamma\bigl(\tfrac{n}{p} + 1\bigr)} R^n.

See also

References

{{Reflist}}

= Further reading =

  • {{Cite journal |last=Hayes |first=Brian| author-link=Brian Hayes (scientist) |title=An Adventure in the Nth Dimension |url=https://www.americanscientist.org/article/an-adventure-in-the-nth-dimension |access-date=October 24, 2024 |journal=American Scientist |volume=99 |issue=9| date=November–December 2011| page=442 |doi=10.1511/2011.93.442}}, bibliography, accessible to layman.
  • Updated version: {{Cite book |last=Hayes |first=Brian |author-link=Brian Hayes (scientist) |chapter=Playing Ball in the nth Dimension |title=Foolproof, and Other Mathematical Meditations |publisher=The MIT Press |publication-date=September 22, 2017 |isbn=9780262036863}}, bibliography, accessible to layman.