Weibel's conjecture

In mathematics, Weibel's conjecture gives a criterion for vanishing of negative algebraic K-theory groups. The conjecture was proposed by {{harvtxt|Weibel|1980}} and proven in full generality by {{harvtxt|Kerz|Strunk|Tamme|2018}} using methods from derived algebraic geometry. Previously partial cases had been proven by

{{harvtxt|Haesemeyer|2004}},

{{harvtxt|Cortiñas|Haesemeyer|Schlichting|Weibel|2008}},

{{harvtxt|Geisser|Hesselholt|2010}},

{{harvtxt|Cisinski|2013}},

{{harvtxt|Kelly|2014}}, and

{{harvtxt|Morrow|2016}}.

Statement of the conjecture

Weibel's conjecture asserts that for a Noetherian scheme X of finite Krull dimension d, the K-groups vanish in degrees < −d:

: K_i(X) = 0 \text{ for } i<-d

and asserts moreover a homotopy invariance property for negative K-groups

: K_i(X) = K_i(X\times \mathbb A^r) \text{ for } i\le -d \text{ and arbitrary } r.

Generalization

Recently, {{harvtxt|Kelly|Saito|Tamme|2024}} have generalized Weibel's conjecture to arbitrary quasi-compact quasi-separated derived schemes. In this formulation the Krull dimension is replaced by the valuative dimension (that is, maximum of the Krull dimension of all blow-ups). In the case of Noetherian schemes, the Krull dimension is equal to the valuative dimension.

References

  • {{citation|first=Chuck|last=Weibel|title=K-theory and analytic isomorphisms|journal=Invent. Math.|volume=61|year=1980|issue=2|pages=177–197|doi=10.1007/bf01390120|bibcode=1980InMat..61..177W }}
  • {{citation|first1=Moritz|last1=Kerz|first2=Florian|last2=Strunk|first3=Georg|last3=Tamme|title=Algebraic K-theory and descent for blow-ups|journal=Invent. Math.|volume=211|year=2018|issue=2|pages=523–577|mr=3748313|doi=10.1007/s00222-017-0752-2|arxiv=1611.08466|bibcode=2018InMat.211..523K }}

Category:Algebraic geometry

  • {{Cite journal

| last1 = Cortiñas

| first1 = Guillermo

| last2 = Haesemeyer

| first2 = Christian

| last3 = Schlichting

| first3 = Marco

| last4 = Weibel

| first4 = Charles

| title = Cyclic homology, cdh-cohomology and negative K-theory

| journal = Annals of Mathematics

| volume = 167

| issue = 2

| pages = 549–573

| year = 2008

| doi = 10.4007/annals.2008.167.549

| jstor = 40345438

| arxiv = math/0502255

}}

  • {{Cite journal

| last = Cisinski

| first = Denis-Charles

| title = Descente par éclatements en K-théorie invariante par homotopie

| journal = Annals of Mathematics

| volume = 177

| issue = 2

| pages = 425–448

| year = 2013

| doi = 10.4007/annals.2013.177.2.2

| jstor = 23496531

| arxiv = 1003.1487

}}

  • {{Cite journal

| last = Kelly

| first = Shane

| title = Vanishing of negative K-theory in positive characteristic

| journal = Compositio Mathematica

| volume = 150

| issue = 8

| pages = 1425–1434

| year = 2014

| publisher = London Mathematical Society

| doi = 10.1112/S0010437X14007472

| doi-broken-date = 5 May 2025

}}

  • {{Cite journal

| last = Morrow

| first = Matthew

| title = Pro cdh-descent for cyclic homology and K-theory

| journal = Journal of the Institute of Mathematics of Jussieu

| volume = 15

| issue = 3

| pages = 539–567

| year = 2016

| publisher = Cambridge University Press

| doi = 10.1017/S1474748014000049

| doi-broken-date = 5 May 2025

}}

  • {{Cite journal

| last1 = Geisser

| first1 = Thomas

| last2 = Hesselholt

| first2 = Lars

| title = On the vanishing of negative K-groups

| journal = Mathematische Annalen

| volume = 348

| issue = 3

| pages = 707–736

| year = 2010

| publisher = Springer

| doi = 10.1007/s00208-009-0413-1

| doi-broken-date = 5 May 2025

}}

  • {{Cite journal

| last1 = Haesemeyer

| first1 = Christian

| title = Descent properties of homotopy K-theory

| journal = Duke Mathematical Journal

| volume = 125

| issue = 3

| pages = 589–620

| year = 2004

| doi = 10.1215/S0012-7094-04-12534-5

| url = https://projecteuclid.org/journals/duke-mathematical-journal/volume-125/issue-3/Descent-Properties-of-Homotopy-K-Theory/10.1215/S0012-7094-04-12534-5.short

}}

  • {{Cite arXiv

|eprint=2407.04378

|last1=Kelly

|first1=Shane

|last2=Saito

|first2=Shuji

|last3=Tamme

|first3=Georg

|title=On pro-cdh descent on derived schemes

|date=2024

|class=math.KT

}}

Category:K-theory

{{Algebraic-geometry-stub}}