Weinstein–Aronszajn identity

{{Redirect-distinguish|Sylvester's determinant theorem|Sylvester's determinant identity}}{{Short description|For two suitable matrices, A and B, I+AB and I+BA have the same determinant}}

In mathematics, the Weinstein–Aronszajn identity states that if A and B are matrices of size {{math|m × n}} and {{math|n × m}} respectively (either or both of which may be infinite) then,

provided AB (and hence, also BA) is of trace class,

:\det(I_m + AB) = \det(I_n + BA),

where I_k is the {{math|k × k}} identity matrix.

It is closely related to the matrix determinant lemma and its generalization. It is the determinant analogue of the Woodbury matrix identity for matrix inverses.

Proof

The identity may be proved as follows.{{citation|title=An Introduction to Grids, Graphs, and Networks|first=C.|last=Pozrikidis|publisher=Oxford University Press|year=2014|isbn=9780199996735|page=271|url=https://books.google.com/books?id=Ws_RAgAAQBAJ&pg=PA271}}

Let M be a matrix consisting of the four blocks I_m, A, B and I_n:

:M = \begin{pmatrix} I_m & A \\ B & I_n \end{pmatrix}.

Because {{math|Im}} is invertible, the formula for the determinant of a block matrix gives

:\det\!\begin{pmatrix} I_m & A \\ B & I_n \end{pmatrix} = \det(I_m) \det(I_n - B I_m^{-1} A) = \det(I_n - BA).

Because {{math|In}} is invertible, the formula for the determinant of a block matrix gives

:\det\!\begin{pmatrix} I_m & A\\ B & I_n \end{pmatrix} = \det(I_n) \det(I_m - A I_n^{-1} B) = \det(I_m - AB).

Thus

:\det(I_n - B A) = \det(I_m - A B).

Substituting -A for A then gives the Weinstein–Aronszajn identity.

Applications

Let \lambda \in \mathbb{R} \setminus \{0\}. The identity can be used to show the somewhat more general statement that

: \det(AB - \lambda I_m) = (-\lambda)^{m - n} \det(BA - \lambda I_n).

It follows that the non-zero eigenvalues of AB and BA are the same.

This identity is useful in developing a Bayes estimator for multivariate Gaussian distributions.

The identity also finds applications in random matrix theory by relating determinants of large matrices to determinants of smaller ones.{{cite web|url=http://terrytao.wordpress.com/2010/12/17/the-mesoscopic-structure-of-gue-eigenvalues/ |title=The mesoscopic structure of GUE eigenvalues | What's new |website=Terrytao.wordpress.com |date= 18 December 2010|accessdate=2016-01-16}}

References

{{reflist}}

{{DEFAULTSORT:Weinstein-Aronszajn identity}}

Category:Determinants

Category:Matrix theory

Category:Theorems in linear algebra

{{linear-algebra-stub}}