Werner state
{{cite journal
|author=Reinhard F. Werner
|year=1989
|title=Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model
|journal=Physical Review A
|volume=40 |issue=8 |pages=4277–4281
|doi=10.1103/PhysRevA.40.4277
|bibcode=1989PhRvA..40.4277W
|pmid=9902666
}} is a {{nowrap| × }}-dimensional bipartite quantum state density matrix that is invariant under all unitary operators of the form . That is, it is a bipartite quantum state that satisfies
:
for all unitary operators U acting on d-dimensional Hilbert space. These states were first developed by Reinhard F. Werner in 1989.
General definition
Every Werner state is a mixture of projectors onto the symmetric and antisymmetric subspaces, with the relative weight being the main parameter that defines the state, in addition to the dimension :
:
where
:
:
are the projectors and
:
is the permutation or flip operator that exchanges the two subsystems A and B.
Werner states are separable for p ≥ {{frac|1|2}} and entangled for p < {{frac|1|2}}. All entangled Werner states violate the PPT separability criterion, but for d ≥ 3 no Werner state violates the weaker reduction criterion. Werner states can be parametrized in different ways. One way of writing them is
:
where the new parameter α varies between −1 and 1 and relates to p as
:
Two-qubit example
Two-qubit Werner states, corresponding to above, can be written explicitly in matrix form as
+ \frac{(1-p)}{2}
\begin{pmatrix}0 & 0 & 0 & 0 \\ 0&1 & -1 &0 \\0&-1&1&0\\0&0&0&0\end{pmatrix}
= \begin{pmatrix}
\frac{p}{3} & 0 & 0 & 0 \\
0 & \frac{3-2p}{6} & \frac{-3+4p}{6} & 0 \\
0 & \frac{-3+4p}{6} & \frac{3-2p}{6} & 0\\
0 & 0 & 0 & \frac{p}{3}
\end{pmatrix}. Equivalently, these can be written as a convex combination of the totally mixed state with (the projection onto) a Bell state:
\lambda |\Psi^-\rangle\!\langle\Psi^-| + \frac{1-\lambda}{4}I_{AB},
\qquad |\Psi^-\rangle\equiv \frac{1}{\sqrt2}(|01\rangle-|10\rangle), where (or, confining oneself to positive values, ) is related to by . Then, two-qubit Werner states are separable for and entangled for .
Werner-Holevo channels
A Werner-Holevo quantum channel
p,d\right) } with parameters and integer
is defined as
{{cite journal
|author=Reinhard F. Werner and Alexander S. Holevo
|year=2002
|title=Counterexample to an additivity conjecture for output purity of quantum channels
|journal=Journal of Mathematical Physics
|volume=43 |issue=9 |pages=4353–4357
|doi=10.1063/1.1498491
|arxiv=quant-ph/0203003
|bibcode=2002JMP....43.4353W
|s2cid=42832247
}}
{{cite journal
|first1=Mark |last1=Fannes |first2=B. |last2=Haegeman |first3=Milan |last3=Mosonyi |first4=D. |last4=Vanpeteghem
|year=2004
|title=Additivity of minimal entropy out- put for a class of covariant channels
|journal=unpublished
|arxiv=quant-ph/0410195
|bibcode=2004quant.ph.10195F
}}
{{cite journal
|author=Debbie Leung and William Matthews
|year=2015
|title=On the power of PPT-preserving and non-signalling codes
|journal=IEEE Transactions on Information Theory
|volume=61 |issue=8 |pages=4486–4499
|doi=10.1109/TIT.2015.2439953
|arxiv=1406.7142
|s2cid=14083225
}}
:
\mathcal{W}_{A\rightarrow B}^{\left( p,d\right) } = p
\mathcal{W}_{A\rightarrow B}^{\text{sym} }+\left( 1-p\right)\mathcal{W}_{A\rightarrow
B}^{\text{as} },
where the quantum channels and
are defined as
:
\mathcal{W}_{A\rightarrow B}^{\text{sym} }(X_{A}) =
\frac{1}{d+1}\left[\operatorname{Tr}[X_{A}]I_{B}+\operatorname{id}_{A\rightarrow B}
(T_{A}(X_{A}))\right],
:
\frac{1}{d-1}\left[\operatorname{Tr}[X_{A}]I_{B}-\operatorname{id}_{A\rightarrow B}
(T_{A}(X_{A}))\right],
and denotes the partial transpose map on system A. Note that the
Choi state of the Werner-Holevo channel
is a Werner state:
:
\mathcal{W}_{A\rightarrow B}^{\left( p,d\right) }(\Phi_{RA})=p \frac{2}{d\left( d+1\right) }P_{RB}^{\text{sym}}+
\left(
1-p\right)\frac{2}{d\left( d-1\right) }P_{RB}^{\text{as}},
where .
Multipartite Werner states
Werner states can be generalized to the multipartite case.{{cite journal |last1=Eggeling |first1=Tilo |last2=Werner |first2=Reinhard |title=Separability properties of tripartite states with UxUxU-symmetry |journal=Physical Review A |date=2001 |volume=63 |page=042111 |doi=10.1103/PhysRevA.63.042111|arxiv=quant-ph/0010096|s2cid=119350302 }} An N-party Werner state is a state that is invariant under for any unitary U on a single subsystem. The Werner state is no longer described by a single parameter, but by N! − 1 parameters, and is a linear combination of the N! different permutations on N systems.