Weyl's inequality#Weyl's inequality in matrix theory

{{Short description|Inequalities in number theory and matrix theory}}

{{about|Weyl's inequality in linear algebra|Weyl's inequality in number theory|Weyl's inequality (number theory)}}

In linear algebra, Weyl's inequality is a theorem about the changes to eigenvalues of an Hermitian matrix that is perturbed. It can be used to estimate the eigenvalues of a perturbed Hermitian matrix.

Weyl's inequality about perturbation

Let A,B be Hermitian on inner product space V with dimension n, with spectrum ordered in descending order \lambda_1 \geq ... \geq \lambda_n. Note that these eigenvalues can be ordered, because they are real (as eigenvalues of Hermitian matrices).

{{Math theorem|name=Weyl inequality|note=|math_statement=

\lambda_{i+j-1}(A+B) \leq \lambda_i(A)+\lambda_j(B) \leq \lambda_{i+j-n}(A+B)

}}

{{Math proof|title=Proof|proof=

By the min-max theorem, it suffices to show that any W \subset V with dimension i+j-1, there exists a unit vector w such that \langle w, (A+B)w\rangle \leq \lambda_i(A) + \lambda_j(B).

By the min-max principle, there exists some W_A with codimension (i-1), such that \lambda_i(A) = \max_{x\in W_A; \|x\|=1}\langle x, Ax\rangle Similarly, there exists such a W_B with codimension j-1. Now W_A \cap W_B has codimension \leq i+j-2, so it has nontrivial intersection with W. Let w \in W \cap W_A \cap W_B, and we have the desired vector.

The second one is a corollary of the first, by taking the negative.

}}

Weyl's inequality states that the spectrum of Hermitian matrices is stable under perturbation. Specifically, we have:

{{Math theorem|name=Corollary (Spectral stability)|note=|math_statement=

\lambda_k(A+B) - \lambda_k(A) \in [\lambda_n(B), \lambda_1(B)]

|\lambda_k(A+B) - \lambda_k(A)| \leq \|B\|_{op} where

\|B\|_{op} = \max(|\lambda_1(B)|, |\lambda_n(B)|) is the operator norm.

}}

In jargon, it says that \lambda_k is Lipschitz-continuous on the space of Hermitian matrices with operator norm.

Weyl's inequality between eigenvalues and singular values

Let A \in \mathbb{C}^{n \times n} have singular values \sigma_1(A) \geq \cdots \geq \sigma_n(A) \geq 0 and eigenvalues ordered so that |\lambda_1(A)| \geq \cdots \geq |\lambda_n(A)|. Then

: |\lambda_1(A) \cdots \lambda_k(A)| \leq \sigma_1(A) \cdots \sigma_k(A)

For k = 1, \ldots, n, with equality for k=n.

Roger A. Horn, and Charles R. Johnson Topics in Matrix Analysis. Cambridge, 1st Edition, 1991. p.171

Applications

= Estimating perturbations of the spectrum =

Let Hermitian matrices M and N differ by a matrix R. Assume that R is small in the sense that its spectral norm satisfies \|R\|_2 \le \epsilon for some small \epsilon>0. Then it follows that all the eigenvalues of R are bounded in absolute value by \epsilon. Applying Weyl's inequality, it follows that the spectra of the Hermitian matrices M and N are close in the sense that

Weyl, Hermann. [https://link.springer.com/article/10.1007/BF01456804 "Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung)."] Mathematische Annalen 71, no. 4 (1912): 441-479.

:|\mu_i - \nu_i| \le \epsilon \qquad \forall i=1,\ldots,n.

Note, however, that this eigenvalue perturbation bound is generally false for non-Hermitian matrices (or more accurately, for non-normal matrices). For a counterexample, let t>0 be arbitrarily small, and consider

:M = \begin{bmatrix} 0 & 0 \\ 1/t^2 & 0 \end{bmatrix}, \qquad N = M + R = \begin{bmatrix} 0 & 1 \\ 1/t^2 & 0 \end{bmatrix}, \qquad R = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.

whose eigenvalues \mu_1 = \mu_2 = 0 and \nu_1 = +1/t, \nu_2 = -1/t do not satisfy |\mu_i - \nu_i| \le \|R\|_2 = 1.

= Weyl's inequality for singular values =

Let M be a p \times n matrix with 1 \le p \le n. Its singular values \sigma_k(M) are the p positive eigenvalues of the (p+n) \times (p+n) Hermitian augmented matrix

:\begin{bmatrix} 0 & M \\ M^* & 0 \end{bmatrix}.

Therefore, Weyl's eigenvalue perturbation inequality for Hermitian matrices extends naturally to perturbation of singular values.{{cite web|last1=Tao|first1=Terence|title=254A, Notes 3a: Eigenvalues and sums of Hermitian matrices|url=https://terrytao.wordpress.com/2010/01/12/254a-notes-3a-eigenvalues-and-sums-of-hermitian-matrices/|website=Terence Tao's blog|accessdate=25 May 2015|date=2010-01-13}} This result gives the bound for the perturbation in the singular values of a matrix M due to an additive perturbation \Delta:

:|\sigma_k(M+\Delta) - \sigma_k(M)| \le \sigma_1(\Delta)

where we note that the largest singular value \sigma_1(\Delta) coincides with the spectral norm \|\Delta\|_2.

Notes

{{Reflist}}

References

  • Matrix Theory, Joel N. Franklin, (Dover Publications, 1993) {{ISBN|0-486-41179-6}}
  • "Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen", H. Weyl, Math. Ann., 71 (1912), 441–479

{{DEFAULTSORT:Weyl's Inequality}}

Category:Diophantine approximation

Category:Inequalities (mathematics)

Category:Linear algebra