Weyl connection

{{short description|Generalization of the Levi-Civita connection}}

In differential geometry, a Weyl connection (also called a Weyl structure) is a generalization of the Levi-Civita connection that makes sense on a conformal manifold. They were introduced by Hermann Weyl {{harv|Weyl|1918}} in an attempt to unify general relativity and electromagnetism. His approach, although it did not lead to a successful theory,{{harvnb|Bergmann|1942|loc=Chapter XVI: Weyl's gauge-invariant geometry}} lead to further developments of the theory in conformal geometry, including a detailed study by Élie Cartan {{harv|Cartan|1943}}. They were also discussed in {{harvtxt|Eisenhart|1927}}.

Specifically, let M be a smooth manifold, and [g] a conformal class of (non-degenerate) metric tensors on M, where h,g\in[g] iff h=e^{2\gamma}g for some smooth function \gamma (see Weyl transformation). A Weyl connection is a torsion free affine connection on M such that, for any g\in [g],

\nabla g = \alpha_g \otimes g

where \alpha_g is a one-form depending on g.

If \nabla is a Weyl connection and h=e^{2\gamma}g, then

\nabla h = (2\,d\gamma+\alpha_g)\otimes h

so the one-form transforms by

\alpha_{e^{2\gamma}g} = 2\,d\gamma+\alpha_g.

Thus the notion of a Weyl connection is conformally invariant, and the change in one-form is mediated by a de Rham cocycle.

An example of a Weyl connection is the Levi-Civita connection for any metric in the conformal class [g], with \alpha_g=0. This is not the most general case, however, as any such Weyl connection has the property that the one-form \alpha_h is closed for all h belonging to the conformal class. In general, the Ricci curvature of a Weyl connection is not symmetric. Its skew part is the dimension times the two-form d\alpha_g, which is independent of g in the conformal class, because the difference between two \alpha_g is a de Rham cocycle. Thus, by the Poincaré lemma, the Ricci curvature is symmetric if and only if the Weyl connection is locally the Levi-Civita connection of some element of the conformal class.{{harvnb|Higa|1993}}

Weyl's original hope was that the form \alpha_g could represent the vector potential of electromagnetism (a gauge dependent quantity), and d\alpha_g the field strength (a gauge invariant quantity). This synthesis is unsuccessful in part because the gauge group is wrong: electromagnetism is associated with a U(1) gauge field, not an \mathbb R gauge field.

{{harvtxt|Hall|1992}} showed that an affine connection is a Weyl connection if and only if its holonomy group is a subgroup of the conformal group. The possible holonomy algebras in Lorentzian signature were analyzed in {{harvtxt|Dikarev|2021}}.

A Weyl manifold is a manifold admitting a global Weyl connection. The global analysis of Weyl manifolds is actively being studied. For example, {{harvtxt|LeBrun|Mason|2009}} considered complete Weyl manifolds such that the Einstein vacuum equations hold, an Einstein–Weyl geometry, obtaining a complete characterization in three dimensions.

Weyl connections also have current applications in string theory and holography.{{harvtxt|Ciambelli|Leigh|2020}}{{harvtxt|Jia|Karydas|2021}}

Weyl connections have been generalized to the setting of parabolic geometries, of which conformal geometry is a special case, in {{harvtxt|Čap|Slovák|2003}}.

Citations

{{reflist}}

References

  • {{citation|authorlink=Peter Bergmann|first=Peter|last=Bergmann|title=Introduction to the theory of relativity|publisher=Prentice-Hall|year=1942}}.
  • {{citation|first1=Andreas|last1=Čap|first2=Jan|last2=Slovák|title=Weyl structures for parabolic geometries|arxiv=math/0001166|year=2003|journal=Mathematica Scandinavica|volume=93|issue=1|pages=53–90|jstor=24492421|doi=10.7146/math.scand.a-14413|doi-access=free}}.
  • {{citation|first=Élie|last=Cartan|authorlink=Élie Cartan|title=Sur une classe d'espaces de Weyl|journal=Annales scientifiques de l'École Normale Supérieure|volume=60|issue=3|pages=1–16|year=1943|doi=10.24033/asens.901 |doi-access=free}}.
  • {{citation|title=Weyl connections and their role in holography|first1=Luca|last1=Ciambelli|first2=Robert|last2=Leigh|authorlink2=Robert Leigh (physicist)|journal=Physical Review D|year=2020|volume=101|issue=8 |page=086020 |arxiv=1905.04339|doi=10.1103/PhysRevD.101.086020|s2cid=152282710 }}
  • {{citation|first=A|last=Dikarev|title=On holonomy of Weyl connections in Lorentzian signature|journal=Differential Geometry and Its Applications|year=2021|volume=76|number=101759|doi=10.1016/j.difgeo.2021.101759|arxiv=2005.08166|s2cid=218673884 }}.
  • {{citation|authorlink=Luther P. Eisenhart|first=Luther|last=Eisenhart|title=Non-Riemannian geometry|publisher=AMS|year=1927}}.
  • {{citation|first=Gerald|last=Folland|authorlink=Gerald Folland|year=1970|title=Weyl manifolds|journal=Journal of Differential Geometry|volume=4|issue=2|pages=145–153|doi=10.4310/jdg/1214429379|doi-access=free}}.
  • {{citation|first=G.|last=Hall|title=Weyl manifolds and connections|journal=Journal of Mathematical Physics|volume=33|page=2633|year=1992|issue=7 |doi=10.1063/1.529582}}.
  • {{citation|first=Tatsuo|last=Higa|year=1993|title=Weyl manifolds and Einstein–Weyl manifolds|journal=Commentarii Mathematici Universitatis Sancti Pauli|volume=42|issue=2|pages=143–160}}.
  • {{citation|first1=W|last1=Jia|first2=M|last2=Karydas|title=Obstruction tensors in Weyl geometry and holographic Weyl anomaly|journal=Physical Review D|year=2021|volume=104|number=126031|page=126031 |doi=10.1103/PhysRevD.104.126031 |s2cid=238215186 |url=https://journals.aps.org/prd/pdf/10.1103/PhysRevD.104.126031|doi-access=free|arxiv=2109.14014}}
  • {{citation|authorlink1=Claude LeBrun|first1=Claude|last1=LeBrun|first2=Lionel J.|last2=Mason|title=The Einstein–Weyl equations, scattering maps, and holomorphic disks|journal=Mathematical Research Letters|volume=16|year=2009|issue=2 |pages=291–301|doi=10.4310/MRL.2009.v16.n2.a7|doi-access=free|arxiv=0806.3761}}.
  • {{citation|authorlink=Hermann Weyl|first=Hermann|last=Weyl|title=Reine Infinitesimalgeometrie|journal=Mathematische Zeitschrift|volume=2|year=1918|issue=3–4 |pages=384–411|doi=10.1007/BF01199420|s2cid=186232500 |url=https://zenodo.org/record/1447411 }}.

Further reading

  • {{citation|first=Hiroshi|last=Matsuzoe|title=Geometry of semi-Weyl manifolds and Weyl manifolds|year=2001|journal=Kyushu Journal of Mathematics|volume=55|pages=107–117|doi=10.2206/kyushujm.55.107|doi-access=free}}.
  • {{citation|first1=H.|last1=Pedersen|first2=K. P.|last2=Tod|title=Three dimensional Einstein–Weyl geometry|journal=Advances in Mathematics|year=1993|volume=97|issue=1|pages=74–109|doi=10.1006/aima.1993.1002|doi-access=free}}.
  • {{citation|first1=Iulia|last1=Hirică|first2=Liviu|last2=Nicolescu|title=On Weyl structures|journal=Rendiconti del Circolo Matematico di Palermo|year=2004|pages=390–400|volume=53|issue=3 |doi=10.1007/BF02875731 |s2cid=123385518 }}.
  • {{citation|first1=Jose|last1=Jiménez|first2=Tomi|last2=Koivisto|title=Extended Gauss–Bonnet gravities in Weyl geometry|journal=Classical and Quantum Gravity|volume=31|issue=13|pages=135002|year=2014|arxiv=1402.1846|doi=10.1088/0264-9381/31/13/135002|s2cid=118424219 }}.
  • {{citation|first1=Andreas|last1=Čap|first2=Thomas|last2=Mettler|title=Geometric theory of Weyl structures|journal=Communications in Contemporary Mathematics|volume=25|issue=7|pages=2250026|year=2023|arxiv=1908.10325|doi=10.1142/S0219199722500262|s2cid=201646408 }}.
  • {{citation|title=Convex projective surfaces with compatible Weyl connection are hyperbolic|first1=Thomas|last1=Mettler|first2=Gabriel|last2=Paternain|authorlink2=Gabriel Paternain|arxiv=1804.04616|year=2020|journal=Analysis & PDE|volume=13|issue=4|pages=1073–1097|doi=10.2140/apde.2020.13.1073|s2cid=119657577 }}.
  • {{citation|first1=B|last1=Alexandrov|first2=S|last2=Ivanov|title=Weyl structures with positive Ricci tensor|journal=Differential Geometry and Its Applications|year=2003|volume=18|issue=3|pages=343–350|doi=10.1016/S0926-2245(03)00010-X |s2cid=119624508 |doi-access=free|arxiv=math/9902033}}.
  • {{citation|title=Weyl-parallel forms, conformal products, and Einstein–Weyl manifolds|author1=Florin Belgun|author2=Andrei Moroianu|journal=Asian Journal of Mathematics|year=2011|volume=15|issue=4|pages=499–520|doi=10.4310/AJM.2011.v15.n4.a1 |arxiv=0901.3647|s2cid=55210918 }}.

See also