Weyl module

In algebra, a Weyl module is a representation of a reductive algebraic group, introduced by {{harvs|txt|last=Carter||last2=Lusztig|year1=1974|year2=1974b}} and named after Hermann Weyl. In characteristic 0 these representations are irreducible, but in positive characteristic they can be reducible, and their decomposition into irreducible components can be hard to determine.

See also

Further reading

  • {{Citation | last1=Carter | first1=Roger W. | author1-link=Roger Carter (mathematician) | last2=Lusztig | first2=George | author2-link=George Lusztig| title=On the modular representations of the general linear and symmetric groups | doi=10.1007/BF01214125 | mr=0354887 | year=1974 | journal=Mathematische Zeitschrift | issn=0025-5874 | volume=136 | issue=3 | pages=193–242| s2cid=186230432 }}
  • {{Citation | last1=Carter | first1=Roger W. | author1-link=Roger Carter (mathematician) | last2=Lusztig | first2=G. | author2-link=George Lusztig | title=Proceedings of the Second International Conference on the Theory of Groups (Australian Nat. Univ., Canberra, 1973) | publisher=Springer-Verlag | location=Berlin, New York | series=Lecture Notes in Mathematics | doi=10.1007/BFb0065172 | mr=0369503 | year=1974b | volume=372 | chapter=On the modular representations of the general linear and symmetric groups | pages=218–220| isbn=978-3-540-06845-7 }}
  • {{eom|id=Weyl_module|first=R.|last= Dipper}}

Category:Representation theory

Category:Algebraic groups