White noise analysis

In probability theory, a branch of mathematics, white noise analysis, otherwise known as Hida calculus, is a framework for infinite-dimensional and stochastic calculus, based on the Gaussian white noise probability space, to be compared with Malliavin calculus based on the Wiener process.{{Cite book|title=Introduction to Infinite-Dimensional Stochastic Analysis|last1=Huang|first1=Zhi-yuan|last2=Yan|first2=Jia-An|date=2000|publisher=Springer Netherlands|isbn=9789401141086|location=Dordrecht|oclc=851373497}} It was initiated by Takeyuki Hida in his 1975 Carleton Mathematical Lecture Notes.{{Cite book|title=Stochastic Systems: Modeling, Identification and Optimization, I|volume = 5|last=Hida|first=Takeyuki|date=1976|publisher=Springer, Berlin, Heidelberg|isbn=978-3-642-00783-5|series=Mathematical Programming Studies|pages=53–59|language=en|doi=10.1007/bfb0120763|chapter = Analysis of Brownian functionals|url = http://purl.umn.edu/4378}}

The term white noise was first used for signals with a flat spectrum.

White noise measure

The white noise probability measure \mu on the space S'(\mathbb{R}) of tempered distributions has the characteristic function{{Cite book|last1=Hida|first1=Takeyuki|last2=Kuo|first2=Hui-Hsiung|last3=Potthoff|first3=Jürgen|last4=Streit|first4=Ludwig|title=White Noise |language=en-gb|doi=10.1007/978-94-017-3680-0|year = 1993|isbn = 978-90-481-4260-6}}

: C(f)=\int_{S'(\mathbb{R})}\exp \left( i\left\langle \omega ,f\right\rangle

\right) \, d\mu (\omega )=\exp \left( -\frac{1}{2}\int_{\mathbb{R}} f^2(t) \, dt\right), \quad f\in S(\mathbb{R}).

= Brownian motion in white noise analysis =

A version of Wiener's Brownian motion B(t) is obtained by the dual pairing

: B(t) = \langle \omega, 1\!\!1_{[0,t)}\rangle,

where 1\!\!1_{[0,t)} is the indicator function of the interval [0,t)

. Informally

: B(t)=\int_0^t \omega(t) \, dt

and in a generalized sense

: \omega(t)=\frac{d B(t)}{dt}.

Hilbert space

Fundamental to white noise analysis is the Hilbert space

: (L^2):=L^2\left( S'(\mathbb{R}),\mu \right),

generalizing the Hilbert spaces L^2(\mathbb{R}^n,e^{-\frac{1}{2} x^2}d^n x) to infinite dimension.

= [[Polynomial chaos|Wick polynomials]] =

An orthonormal basis in this Hilbert space, generalizing that of Hermite polynomials, is given by the so-called "Wick", or "normal ordered" polynomials \left\langle {:\omega^n:} , f_n\right\rangle with {:\omega^n:} \in S'(\mathbb{R}^n) and f_n \in S(\mathbb{R}^n)

with normalization

: \int_{S'(\mathbb{R})}\left\langle :\omega^n:,f_n \right\rangle^2 \, d\mu(\omega) = n!\int f_{n}^2(x_1,\ldots,x_n) \, d^n x,

entailing the Itô-Segal-Wiener isomorphism of the white noise Hilbert space (L^2) with Fock space:

: L^2\left( S'(\mathbb{R}),\mu \right) \simeq \bigoplus\limits_{n=0}^\infty \operatorname{Sym} L^2(\mathbb{R}^n,n! \, d^n x).

The "chaos expansion"

: \varphi(\omega) =\sum_n \left\langle :\omega^n:, f_n\right\rangle

in terms of Wick polynomials correspond to the expansion in terms of multiple Wiener integrals. Brownian martingales M_t(\omega) are characterized by kernel functions f_n depending on t only a "cut-off":

: f_n(x_1,\ldots,x_n;t)=

\begin{cases}

f_n (x_1,\ldots,x_n) & \text{if } i x_i\leq t, \\

0 & \text{otherwise}.

\end{cases}

= [[Gelfand triple]]s =

Suitable restrictions of the kernel function \varphi _{n} to be smooth and rapidly decreasing in x and n give rise to spaces of white noise test functions \varphi , and, by duality, to spaces of generalized functions \Psi of white noise, with

: \left\langle \! \left\langle \Psi ,\varphi \right\rangle \!\right\rangle

:=\sum_n n!\left\langle \psi_n,\varphi_n \right\rangle

generalizing the scalar product in (L^2) . Examples are the Hida triple, with

: \varphi \in (S)\subset (L^2)\subset (S)^\ast \ni \Psi

or the more general Kondratiev triples.{{Cite journal|last1=Kondrat'ev|first1=Yu.G.|last2=Streit|first2=L.|title=Spaces of White Noise distributions: constructions, descriptions, applications. I|journal=Reports on Mathematical Physics|volume=33|issue=3|pages=341–366|doi=10.1016/0034-4877(93)90003-w|year=1993|bibcode=1993RpMP...33..341K }}

T- and S-transform

Using the white noise test functions

: \varphi_f(\omega ):=\exp \left( i\left\langle \omega ,f\right\rangle \right) \in (S),\quad f \in S(\mathbb{R})

one introduces the "T-transform" of white noise distributions \Psi by setting

: T\Psi (f):=\left\langle \!\left\langle \Psi ,\varphi _{f}\right\rangle

\!\right\rangle .

Likewise, using

: \phi_f(\omega ):=\exp \left( -\frac{1}{2}\int f^2(t) \, dt\right) \exp\left( -\left\langle \omega ,f\right\rangle \right) \in (S)

one defines the "S-transform" of white noise distributions \Psi by

: S\Psi (f):=\left\langle \!\left\langle \Psi ,\phi_f\right\rangle\!

\right\rangle,\quad f \in S(\mathbb{R}).

It is worth noting that for generalized functions \Psi, {{clarify|text=with kernels \psi_n as in ,|reason=As in what?|date=May 2018}} the S-transform is just

: S\Psi (f)=\sum n!\left\langle \psi_n,f^{\otimes n}\right\rangle.

Depending on the choice of Gelfand triple, the white noise test functions and distributions are characterized by corresponding growth and analyticity properties of their S- or T-transforms.

= Characterization theorem=

The function G(f) is the T-transform of a (unique) Hida distribution \Psi iff for all f_1,f_2\in S(R), the function z\mapsto G(zf_1+f_2) is analytic in the whole complex plane and of second order exponential growth, i.e. \left\vert G(\ f)\right\vert where K is some continuous quadratic form on S'(\mathbb{R})\times S'(\mathbb{R}).{{Cite journal|last1=Kuo|first1=H.-H.|last2=Potthoff|first2=J.|last3=Streit|first3=L.|date=1991|title=A characterization of white noise test functionals|url=https://projecteuclid.org/euclid.nmj/1118782788|journal=Nagoya Mathematical Journal|language=en|volume=121|pages=185–194|issn=0027-7630|doi=10.1017/S0027763000003469|doi-access=free}}{{Cite journal|last1=Kondratiev|first1=Yu.G.|last2=Leukert|first2=P.|last3=Potthoff|first3=J.|last4=Streit|first4=L.|last5=Westerkamp|first5=W.|title=Generalized Functionals in Gaussian Spaces: The Characterization Theorem Revisited|journal=Journal of Functional Analysis|volume=141|issue=2|pages=301–318|doi=10.1006/jfan.1996.0130|year=1996|arxiv=math/0303054|s2cid=58889052}}
The same is true for S-transforms, and similar characterization theorems hold for the more general Kondratiev distributions.

Calculus

For test functions \varphi \in (S) , partial, directional derivatives exist:

: \partial_\eta \varphi (\omega ):=\lim_{\varepsilon \rightarrow 0}\frac{\varphi (\omega +\varepsilon \eta )-F(\omega )} \varepsilon

where \omega may be varied by any generalized function \eta . In particular, for the Dirac distribution \eta =\delta _{t} one defines the "Hida derivative", denoting

: \partial_t \varphi (\omega ):=\lim_{\varepsilon \rightarrow 0} \frac{\varphi(\omega +\varepsilon \delta_t)-F(\omega )} \varepsilon.

Gaussian integration by parts yields the dual operator on distribution space

: \partial_t^\ast =-\partial_t+\omega(t)

An infinite-dimensional gradient

: \nabla :(S)\rightarrow L^2(R,dt) \otimes (S)

is given by

: \nabla F(t,\omega) =\partial_t F(\omega).

The Laplacian \triangle ("Laplace–Beltrami operator") with

: -\triangle =\int dt\;\partial_t^\ast \partial_t \geq 0

plays an important role in infinite-dimensional analysis and is the image of the Fock space number operator.

Stochastic integrals

A stochastic integral, the Hitsuda–Skorokhod integral, can be defined for suitable families \Psi (t) of white noise distributions as a Pettis integral

: \int \partial_t^\ast \Psi (t) \, dt\in (S)^\ast,

generalizing the Itô integral beyond adapted integrands.

Applications

In general terms, there are two features of white noise analysis that have been prominent in applications.{{Cite book|title=White noise analysis and quantum information|editor-last=Accardi |editor-first=Luigi |isbn=9789813225459 |location=Singapore |publisher=World Scientific Publishing |oclc=1007244903|last1 = Accardi|first1 = Luigi|last2=Chen|first2=Louis Hsiao Yun|last3=Ohya|first3=Masanori|last4=Hida|first4=Takeyuki|last5=Si|first5=Si|date=June 2017}}{{Cite book|title=Methods and applications of white noise analysis in interdisciplinary sciences |last1=Bernido |first1=Christopher C. |last2=Carpio-Bernido |first2=M. Victoria |isbn=9789814569118 |publisher=World Scientific |location=New Jersey|oclc=884440293|year = 2015}}{{Cite book|title=Stochastic partial differential equations : a modeling, white noise functional approach|date=2010|publisher=Springer|first1=Helge |last1=Holden |first2=Bernt |last2=Øksendal |last3=Ubøe |first3=Jan |author4=Tusheng Zhang |isbn=978-0-387-89488-1|edition= 2nd |location=New York|oclc=663094108}}{{Cite book|title=Let us use white noise|editor1=Hida, Takeyuki |editor2-last=Streit |editor2-first= Ludwig |year=2017 |isbn=9789813220935|location=New Jersey|oclc=971020065 |publisher=World Scientific}}{{Cite book|title=Stochastic Analysis: Classical and Quantum|language=en-US|doi=10.1142/5962|year=2005|editor1-last=Hida|editor1-first=Takeyuki|isbn=978-981-256-526-6}}

First, white noise is a generalized stochastic process with independent values at each time.{{Cite book|title=Generalized functions |volume=4, Applications of harmonic analysis |last1=Gelfand |first1=Izrail Moiseevitch |first2=Naum Âkovlevič |last2=Vilenkin |first3=Amiel |last3=Feinstein|date=1964 |publisher=Academic Press |isbn=978-0-12-279504-6|location=New York|oclc=490085153}} Hence it plays the role of a generalized system of independent coordinates, in the sense that in various contexts it has been fruitful to express more general processes occurring e.g. in engineering or mathematical finance, in terms of white noise.{{Cite journal|last1=Biagini|first1=Francesca|author1-link=Francesca Biagini|last2=Øksendal|first2=Bernt|last3=Sulem|first3=Agnès|author3-link=Agnès Sulem|last4=Wallner|first4=Naomi|date=2004-01-08|title=An introduction to white–noise theory and Malliavin calculus for fractional Brownian motion|url=http://rspa.royalsocietypublishing.org/content/460/2041/347|journal=Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences|language=en|volume=460|issue=2041|pages=347–372|doi=10.1098/rspa.2003.1246|bibcode=2004RSPSA.460..347B |issn=1364-5021|hdl=10852/10633|s2cid=120225816|hdl-access=free}}

Second, the characterization theorem given above allows various heuristic expressions to be identified as generalized functions of white noise. This is particularly effective to attribute a well-defined mathematical meaning to so-called "functional integrals". Feynman integrals in particular have been given rigorous meaning for large classes of quantum dynamical models.

Noncommutative extensions of the theory have grown under the name of quantum white noise, and finally, the rotational invariance of the white noise characteristic function provides a framework for representations of infinite-dimensional rotation groups.

References